Title: | The Waring problem for matrix algebras, II |
---|
Authors: | ID Brešar, Matej (Author) ID Šemrl, Peter (Author) |
Files: | PDF - Presentation file, download (133,03 KB) MD5: 13EF7CD8A2F1804D1E472D94DA28140C
URL - Source URL, visit https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12825
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | Let $f$ be a noncommutative polynomial of degree $m\ge 1$ over an algebraically closed field $F$ of characteristic $0$. If $n\ge m-1$ and $\alpha_1,\alpha_2,\alpha_3$ are nonzero elements from $F$ such that $\alpha_1+\alpha_2+\alpha_3=0$, then every trace zero $n\times n$ matrix over $F$ can be written as $\alpha_1 A_1+\alpha_2A_2+\alpha_3A_3$ for some $A_i$ in the image of $f$ in $M_n(F)$. |
---|
Keywords: | Waring problem, noncommutatative polynomials, matrix algebras |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.08.2023 |
---|
Year of publishing: | 2023 |
---|
Number of pages: | str. 1880-1889 |
---|
Numbering: | Vol. 55, iss. 4 |
---|
PID: | 20.500.12556/DiRROS-18650 |
---|
UDC: | 512 |
---|
ISSN on article: | 0024-6093 |
---|
DOI: | 10.1112/blms.12825 |
---|
COBISS.SI-ID: | 161733891 |
---|
Note: |
|
---|
Publication date in DiRROS: | 10.04.2024 |
---|
Views: | 473 |
---|
Downloads: | 208 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |