| Title: | The Waring problem for matrix algebras, II |
|---|
| Authors: | ID Brešar, Matej (Author) ID Šemrl, Peter (Author) |
| Files: | PDF - Presentation file, download (133,03 KB) MD5: 13EF7CD8A2F1804D1E472D94DA28140C
URL - Source URL, visit https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12825
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | Let $f$ be a noncommutative polynomial of degree $m\ge 1$ over an algebraically closed field $F$ of characteristic $0$. If $n\ge m-1$ and $\alpha_1,\alpha_2,\alpha_3$ are nonzero elements from $F$ such that $\alpha_1+\alpha_2+\alpha_3=0$, then every trace zero $n\times n$ matrix over $F$ can be written as $\alpha_1 A_1+\alpha_2A_2+\alpha_3A_3$ for some $A_i$ in the image of $f$ in $M_n(F)$. |
|---|
| Keywords: | Waring problem, noncommutatative polynomials, matrix algebras |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.08.2023 |
|---|
| Year of publishing: | 2023 |
|---|
| Number of pages: | str. 1880-1889 |
|---|
| Numbering: | Vol. 55, iss. 4 |
|---|
| PID: | 20.500.12556/DiRROS-18650  |
|---|
| UDC: | 512 |
|---|
| ISSN on article: | 0024-6093 |
|---|
| DOI: | 10.1112/blms.12825  |
|---|
| COBISS.SI-ID: | 161733891  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 10.04.2024 |
|---|
| Views: | 1089 |
|---|
| Downloads: | 515 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |