Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Injective coloring of graphs revisited
Avtorji:ID Brešar, Boštjan (Avtor)
ID Samadi, Babak (Avtor)
ID Yero, Ismael G. (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (460,72 KB)
MD5: 6E8358E6F504EA4CDB807E1BC77D0BBF
 
URL URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0012365X23000341
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IMFM - Inštitut za matematiko, fiziko in mehaniko
Povzetek:An open packing in a graph $G$ is a set $S$ of vertices in $G$ such that no two vertices in $S$ have a common neighbor in $G$. The injective chromatic number $\chi_i(G)$ of $G$ is the smallest number of colors assigned to vertices of ▫$G$▫ such that each color class is an open packing. Alternatively, the injective chromatic number of $G$ is the chromatic number of the two-step graph of $G$, which is the graph with the same vertex set as $G$ in which two vertices are adjacent if they have a common neighbor. The concept of injective coloring has been studied by many authors, while in the present paper we approach it from two novel perspectives, related to open packings and the two-step graph operation. We prove several general bounds on the injective chromatic number expressed in terms of the open packing number. In particular, we prove that $\chi_i(G) \ge \frac{1}{2}\sqrt{\frac{1}{4}+\frac{2m-n}{\rho^{o}}}$ holds for any connected graph $G$ of order $n\ge 2$, size $m$, and the open packing number ${\rho^{o}}$, and characterize the class of graphs attaining the bound. Regarding the well known bound $\chi_i(G)\ge \Delta(G)$, we describe the family of extremal graphs and prove that deciding when the equality holds (even for regular graphs) is NP-complete, solving an open problem from an earlier paper. Next, we consider the chromatic number of the two-step graph of a graph, and compare it with the clique number and the maximum degree of the graph. We present two large families of graphs in which $\chi_i(G)$ equals the cardinality of a largest clique of the two-step graph of $G$. Finally, we consider classes of graphs that admit an injective coloring in which all color classes are maximal open packings. We give characterizations of three subclasses of these graphs among graphs with diameter 2, and find a partial characterization of hypercubes with this property.
Ključne besede:two-step graph of a graph, injective coloring, open packing, hypercubes
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:01.05.2023
Leto izida:2023
Št. strani:art. 113348 (12 str.)
Številčenje:Vol. 346, iss. 5
PID:20.500.12556/DiRROS-18637 Novo okno
UDK:519.17
ISSN pri članku:0012-365X
DOI:10.1016/j.disc.2023.113348 Novo okno
COBISS.SI-ID:141111555 Novo okno
Datum objave v DiRROS:09.04.2024
Število ogledov:516
Število prenosov:210
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Discrete mathematics
Skrajšan naslov:Discrete math.
Založnik:Elsevier
ISSN:0012-365X
COBISS.SI-ID:1118479 Novo okno

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0297
Naslov:Teorija grafov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-2452
Naslov:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-3002
Naslov:Prirejanja in barvanja povezav v kubičnih grafih

Financer:Drugi - Drug financer ali več financerjev
Program financ.:FEDER-UPO Research and Development Call
Številka projekta:UPO-1263769

Financer:Drugi - Drug financer ali več financerjev
Program financ.:“José Castillejo” program for young researchers
Številka projekta:CAS21/00100

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:dvostopenjski graf grafa, injektivno barvanje, odprto pakiranje, hiperkocke


Nazaj