Naslov: | Reflexivity of the space of transversal distributions |
---|
Avtorji: | ID Kališnik, Jure (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s12220-023-01390-y
PDF - Predstavitvena datoteka, prenos (332,43 KB) MD5: CE0285495983EE8EC68AB2CF5A861455
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | For any smooth, Hausdorff and second-countable manifold $N$ one can define the Fréchet space ${\mathcal C}^{\infty}(N)$ of smooth functions on $N$ and its strong dual ${\cal E}'(N)$ of compactly supported distributions on $N$. It is a standard result that the strong dual of ${\cal E}'(N)$ is naturally isomorphic to ${\mathcal C}^{\infty}(N)$, which implies that both ${\mathcal C}^{\infty}(N)$ and ${\cal E}'(N)$ are reflexive locally convex spaces. In this paper we generalise that result to the setting of transversal distributions on the total space of a surjective submersion $\pi : P\to M$. We show that the strong ${\mathcal C}^{\infty}_c(M)$-dual of the space ${\cal E}'_{\pi} (P)$ of $\pi$-transversal distributions is naturally isomorphic to the ${\mathcal C}^{\infty}_c(M)$-module ${\mathcal C}^{\infty}(P)$. |
---|
Ključne besede: | distributions with compact support, Fréchet spaces, transversal distributions, homomorphisms of modules, reflexive modules |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.10.2023 |
---|
Leto izida: | 2023 |
---|
Št. strani: | 20 str. |
---|
Številčenje: | Vol. 33, iss. 10, article no. 331 |
---|
PID: | 20.500.12556/DiRROS-18418 |
---|
UDK: | 517.9 |
---|
ISSN pri članku: | 1050-6926 |
---|
DOI: | 10.1007/s12220-023-01390-y |
---|
COBISS.SI-ID: | 178959107 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 15.03.2024 |
---|
Število ogledov: | 513 |
---|
Število prenosov: | 229 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |