Naslov: | Minimal surfaces with symmetries |
---|
Avtorji: | ID Forstnerič, Franc (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/plms.12590
PDF - Predstavitvena datoteka, prenos (483,34 KB) MD5: DDCD746711142D30954B69AEDC137F4C
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | Let $G$ be a finite group acting on a connected open Riemann surface $X$ by holomorphic automorphisms and acting on a Euclidean space ${\mathbb R}^n$ $(n\ge 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a $G$-equivariant conformal minimal immersion $F:X\to{\mathbb R}^n$. We show in particular that such a map $F$ always exists if $G$ acts without fixed points on $X$. Furthermore, every finite group $G$ arises in this way for some open Riemann surface $X$ and $n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete infinite groups acting on $X$ properly discontinuously and acting on ${\mathbb R}^n$ by rigid transformations. |
---|
Ključne besede: | Riemann surfaces, minimal surfaces, G-equivariant conformal minimal immersion |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.03.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 32 str. |
---|
Številčenje: | Vol. 128, iss. 3, [article no.] e12590 |
---|
PID: | 20.500.12556/DiRROS-18392 |
---|
UDK: | 517.5 |
---|
ISSN pri članku: | 0024-6115 |
---|
DOI: | 10.1112/plms.12590 |
---|
COBISS.SI-ID: | 188644867 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 13.03.2024 |
---|
Število ogledov: | 481 |
---|
Število prenosov: | 203 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |