Naslov: | On a continuation of quaternionic and octonionic logarithm along curves and the winding number |
---|
Avtorji: | ID Gentili, Graziano (Avtor) ID Prezelj, Jasna (Avtor) ID Vlacci, Fabio (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0022247X24001410
PDF - Predstavitvena datoteka, prenos (720,93 KB) MD5: 67E62C9CA46C7537CC66F52581457EAB
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | This paper deals with the problem of finding a continuous extension of the hypercomplex (quaternionic or octonionic) logarithm along (quaternionic or octonionic) paths which avoid the origin. The main difficulty depends upon this fact: while a branch of the complex logarithm can be defined in a small open neighbourhood of a strictly negative real point, no continuous branch of the hypercomplex logarithm can be defined in any open set which contains a strictly negative real point. To overcome this difficulty, we use the logarithmic manifold: in general, the existence of a lift of a path to this manifold is not guaranteed and, indeed, the problem of lifting a path to the logarithmic manifold is completely equivalent to the problem of finding a continuation of the hypercomplex logarithm along this path. The second part of the paper scrutinizes the existence of a notion of winding number (with respect to the origin) for hypercomplex loops that avoid the origin, even though it is known that the definition of winding number for such loops is not natural in ${\mathbb R}^n$ when $n$ is greater than $2$. The surprise is that, in the hypercomplex setting, the new definition of winding number introduced in this paper can be given and has full meaning for a large class of hypercomplex loops (untwisted loops with companion that avoid the origin). Finally an original but rather natural notion of homotopy for these hypercomplex loops (the $c$-homotopy) is presented and it is proved to be suitable to comply with the intrinsic geometrical meaning of the winding number for this class of loops, namely, two such hypercomplex loops are $c$-homotopic if, and only if, they have the same winding number. |
---|
Ključne besede: | hypercomplex logarithm, continuation of the hypercomplex logarithm along paths, winding number |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.08.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 25 str. |
---|
Številčenje: | Vol. 536, iss. 1, [article no.] 128219 |
---|
PID: | 20.500.12556/DiRROS-18310 |
---|
UDK: | 517.5 |
---|
ISSN pri članku: | 0022-247X |
---|
DOI: | 10.1016/j.jmaa.2024.128219 |
---|
COBISS.SI-ID: | 187512579 |
---|
Datum objave v DiRROS: | 04.03.2024 |
---|
Število ogledov: | 551 |
---|
Število prenosov: | 239 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |