Naslov: | General position polynomials |
---|
Avtorji: | ID Iršič, Vesna (Avtor) ID Klavžar, Sandi (Avtor) ID Rus, Gregor (Avtor) ID Tuite, James (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00025-024-02133-3
PDF - Predstavitvena datoteka, prenos (384,07 KB) MD5: C344F14A1F3E3CDD2E3D55BB1B2CC4DC
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | A subset of vertices of a graph $G$ is a general position set if no triple of vertices from the set lie on a common shortest path in $G$. In this paper we introduce the general position polynomial as $\sum_{i \geq 0} a_i x^i$, where $a_i$ is the number of distinct general position sets of $G$ with cardinality $i$. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs $K(n,2)$, with unimodal general position polynomials are presented. |
---|
Ključne besede: | general position set, general position number, general position polynomial, unimodality, trees, Cartesian product of graphs, Kneser graphs |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.05.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 16 str. |
---|
Številčenje: | Vol. 79, iss. 3, [article no.] 110 |
---|
PID: | 20.500.12556/DiRROS-18275 |
---|
UDK: | 519.17 |
---|
ISSN pri članku: | 1422-6383 |
---|
DOI: | 10.1007/s00025-024-02133-3 |
---|
COBISS.SI-ID: | 187024387 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 28.02.2024 |
---|
Število ogledov: | 597 |
---|
Število prenosov: | 283 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |