Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Effects of governmental data governance on urban fire risk : a city-wide analysis in China
Avtorji:ID Liu, Zhao-Ge (Avtor)
ID Li, Xiang-Yang (Avtor)
ID Jomaas, Grunde (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S2212420922003570?via%3Dihub
 
.pdf PDF - Predstavitvena datoteka, prenos (1,20 MB)
MD5: 181F5495D08FEA5D019C37816F5D0F72
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo ZAG - Zavod za gradbeništvo Slovenije
Povzetek:The effects of data governance (as a means to maximize big data value creation in fire risk management) performance on fire risk was analyzed based on multi-source statistical data of 105 cities in China from 2016 to 2018. Specifically, data governance was first quantified with ten detailed indicators, which were then selected for explaining urban fire risk through correlation analysis. Next, the sample cities were clustered in terms of major socio-economic characteristics, and then the effects of data governance were examined by constructing multivariate regression models for each city cluster with ordinary least squares (OLS). The results showed that the constructed regression models produced good interpretation of fire risk in different types of cities, with coefficient of determination (R2) in each model exceeding 0.65. Among the indicators, the development of infrastructures (e.g. data collection devices and data analysis platforms), the level of data use, and the updating of fire risk related data were proved to produce significant effects on the reduction of fire frequency and fire consequence. Moreover, the organizational maturity of data governance was proved to be helpful in reducing fire frequency. For the cities with large population, the cross-department sharing of high-value data was found to be another important determinant of urban fire frequency. In comparison with existing statistical models which interpreted fire risk with general social factors (with the highest R2 = 0.60), these new regression models presented a better statistical performance (with the average R2 = 0.72). These findings are expected to provide decision support for the local governments of China and other jurisdictions to facilitate big data projects in improving fire risk management.
Ključne besede:urban fire risk, fire risk management, big data technologies, data governance, socio-economic factors, city-wide analysis
Status publikacije:Objavljeno
Verzija publikacije:Recenzirani rokopis
Datum objave:28.06.2022
Založnik:Elsevier
Leto izida:2022
Št. strani:Str. 1-17
Številčenje:Vol. 78, [article no.] 103138
PID:20.500.12556/DiRROS-17674 Novo okno
UDK:614.84
ISSN pri članku:2212-4209
DOI:10.1016/j.ijdrr.2022.103138 Novo okno
COBISS.SI-ID:143554563 Novo okno
Avtorske pravice:© 2022 Elsevier Ltd. All rights reserved
Datum objave v DiRROS:09.01.2024
Število ogledov:503
Število prenosov:201
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:International journal of disaster risk reduction
Založnik:Elsevier
ISSN:2212-4209
COBISS.SI-ID:519686169 Novo okno

Gradivo je financirano iz projekta

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Major Research Project
Številka projekta:91746207
Naslov:Big data Driven Management and Decision-making Research

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:71774043
Naslov:General Program of Nation Natural Science Foundation of China

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:20720221020
Naslov:Fundamental Research Funds for the Central Universities

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Začetek licenciranja:01.08.2022
Vezano na:Text and Data Mining valid from 2022-08-01 stm-asf valid from 2022-08-01

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:požarna ogroženost mest, obvladovanje požarnega tveganja, tehnologije velikih podatkov, upravljanje podatkov, socialno-ekonomski dejavniki, analiza na ravni celotnega mesta


Nazaj