Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions
Avtorji:ID Skudnik, Mitja (Avtor)
ID Jevšenak, Jernej (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.1016/j.foreco.2022.120017
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo SciVie - Gozdarski inštitut Slovenije
Povzetek:Tree heights are one of the most important aspects of forest mensuration, but data are often unavailable due to costly and time-consuming field measurements. Therefore, various types of models have been developed for the imputation of tree heights for unmeasured trees, with mixed-effects models being one of the most commonly applied approaches. The disadvantage here is the need of sufficient sample size per tree species for each plot, which is often not met, especially in mixed forests. To avoid this limitation, we used principal component analysis (PCA) for the grouping of similar plots based on the most relevant site descriptors. Next, we compared mixed-effects models with height-diameter models based on artificial neural networks (ANN). In terms of root mean square error (RMSE), mixed-effects models provided the most accurate tree height predictions at the plot level, especially for tree species with a smaller number of tree height measurements. When plots were grouped using the PCA and the number of observations per category increased, ANN predictions improved and became more accurate than those provided by mixed-effects models. The performance of ANN also increased when the competition index was included as an additional explanatory variable. Our results show that in the pursuit of the most accurate modelling approach for tree height predictions, ANN should be seriously considered, especially when the number of tree measurements and their distribution is sufficient.
Ključne besede:height-diameter models, national forest inventory, permanent sample plot, mixed forests, model comparison, principal component analysis
Leto izida:2022
Št. strani:9 str.
Številčenje:Vol. 507, art. 120017
PID:20.500.12556/DiRROS-15134 Novo okno
UDK:630*5
ISSN pri članku:1872-7042
DOI:10.1016/j.foreco.2022.120017 Novo okno
COBISS.SI-ID:93487619 Novo okno
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 14. 1. 2022;
Datum objave v DiRROS:08.06.2022
Število ogledov:886
Število prenosov:384
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Forest Ecology and Management
Založnik:Elsevier
ISSN:1872-7042
COBISS.SI-ID:23393541 Novo okno

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P4-0107
Naslov:Gozdna biologija, ekologija in tehnologija

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:V4-2014
Naslov:Razvoj modelov za gospodarjenje z gozdovi v Sloveniji

Sekundarni jezik

Jezik:Ni določen
Ključne besede:višinski modeli, nacionalna gozdna inventura, stalne vzorčne ploskve, mešani gozdovi, primerjava modelov, analiza glavnih komponent


Nazaj