Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "polno besedilo" AND "organizacija" (Zavod za gradbeništvo Slovenije) .

241 - 250 / 316
Na začetekNa prejšnjo stran21222324252627282930Na naslednjo stranNa konec
241.
Modelling the electrochemical transients during repassivation under open-circuit conditions in a neutral solution
Bojan Zajec, Tadeja Kosec, Andraž Legat, 2022, izvirni znanstveni članek

Povzetek: The responses of the current and the coupled potential to rapid depassivation have been studied on a three-electrode system under open-circuit conditions. Passivated AISI 304 stainless steel in low- and high-conductivity solutions of NaSO has been depassivated with a single, rapid scratch over the small fraction of surface of the working electrode (WE). Single- and dual-WE configurations have been implemented. Once the surface is scratched, the current and potential transients exhibit a delayed maximum and minimum, respectively, in contrast to the outcome of more common potentiostatic scratching experiments. A simple model based on the equivalent circuit has been developed to predict the observed transients and provides clear relations between the features of the transient and the parameters of the electrolyte and the electrodes. The interfacial capacitance of the electrodes’ passive surfaces proves crucial for the shapes of the observed potential and current transients. It is shown that this capacitance temporarily provides the majority of the charge for repassivation under open-circuit conditions. Possible sources of specific discrepancies between the model and the measured transients are indicated.
Ključne besede: repassivation, open circuit conditions, transient, modelling, interfacial capacitance
Objavljeno v DiRROS: 21.06.2023; Ogledov: 358; Prenosov: 165
.pdf Celotno besedilo (1,75 MB)
Gradivo ima več datotek! Več...

242.
Characterizing the interfacial zones of fly ash based alkali activated adhesives to various substrates
Wolfgang Wisniewski, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali Activated Materials (AAMs) are important potential substitutes for cement in many materials. The AAMs presented here are based on industrial ground granulated blast furnace slag (GGBFS) and fly ash (FA). They are tested for their suitability as adhesives for joining concrete, ceramic tiles, a wood-based geopolymer (WGP) and a high density geopolymer (HDGP). After mixing multiple batches and performing preliminary tests of the resulting shrinkage, bending-, compressive- and pull-of-strengths to standard ceramic tiles, selected mixtures are tested for their open time and applied to bond intended substrates. The interfacial zones (ITZ) of an AAM containing additional KOH and the most comparable KOH-free AAM to concrete, ceramic tiles, WPG and HDGP are subsequently characterized in detail using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). Both mechanical interlocking and areas of probable chemical bonding are identified.
Ključne besede: adhisive, fly ash, ITZ, pull of test, open ccess
Objavljeno v DiRROS: 21.06.2023; Ogledov: 339; Prenosov: 230
.pdf Celotno besedilo (4,51 MB)
Gradivo ima več datotek! Več...

243.
Environmental and biological impact of fly ash and metakaolin-based alkali-activated foams obtained at 70°C and Fired at 1,000°C
Cristina Leonelli, Janez Turk, Giovanni Dal Poggetto, Michelina Catauro, Katja Traven, Alenka Mauko Pranjić, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali-activated foams (AAFs) are inorganic porous materials that can be obtained at temperatures well below 100° C with the use of inorganic wastes as aluminosilicate precursors. In this case, fly ash derived from a Slovenian power plant has been investigated. Despite the environmental benefits per se, due to saving of energy and virgin materials, when using waste materials, it is of extreme importance to also evaluate the potential leaching of heavy metal cations from the alkali-activated foams. This article presents an environmental study of a porous geopolymer derived from this particular fly ash, with respect to the leachability of potentially hazardous elements, its environmental toxicity as determined by biological testing, and the environmental impact of its production. In particular, attention was focused to investigate whether or not 1,000 °C-fired alkali- activated fly ash and metakaolin-based foams, cured at 70 °C, are environmentally friendlier options compared to unfired ones, and attempts to explain the rationale of the results were done. Eventually, the firing process at 1,000 ° C, apart from improving technical performance, could reinforce heavy metal cation entrapment within the aluminosilicate matrix. Since technical performance was also modified by addition of different types of activators (K-based or Na-based), as well as by partial replacement of fly ash with metakaolin, a life cycle assessment (LCA) analysis was performed to quantify the effect of these additions and processes (curing at 70 ° C and firing at 1,000 °C) in terms of global warming potential. Selected samples were also evaluated in terms of leaching of potentially deleterious elements as well as for the immobilization effect of firing. The leaching test indicated that none of the alkali-activated material is classified as hazardous, not even the as-received fly ash as component of new AAF. All of the alkali-activated foams do meet the requirements for an inertness. The highest impact on bacterial colonies was found in samples that did not undergo firing procedures, i.e., those that were cured at 70 °C, which induced the reduction of bacterial Enterococcus faecalis viability. The second family of bacteria tested, Escherichia coli, appeared more resistant to the alkaline environment (pH = 10–12) generated by the unfired AAMs. Cell viability recorded the lowest value for unfired alkali-activated materials produced from fly ash and K-based activators. Its reticulation is only partial, with the leachate solution appearing to be characterized with the most alkaline pH and with the highest ionic conductivity, i.e., highest number of soluble ions. By LCA, it has been shown that 1) changing K-based activators to Na-based activators increases environmental impact of the alkali-activated foams by 1%–4% in terms of most of the impact categories (taking into account the production stage). However, in terms of impact on abiotic depletion of elements and impact on ozone layer depletion, the increase is relatively more significant (11% and 18%, respectively); 2) replacing some parts of fly ash with metakaolin also results in relatively higher environmental footprint (increase of around 1%–4%, while the impact on abiotic depletion of elements increases by 14%); and finally, 3) firing at 1,000°C contributes significantly to the environmental footprint of alkali- activated foams. In such a case, the footprint increases by around one third, compared to the footprint of alkali-activated foams produced at 70 ° C. A combination of LCA and leaching/toxicity behavior analysis presents relevant combinations, which can provide information about long-term environmental impact of newly developed waste-based materials.
Ključne besede: alkali activated materials, geopolimers, leaching, LCA
Objavljeno v DiRROS: 20.06.2023; Ogledov: 293; Prenosov: 172
.pdf Celotno besedilo (3,42 MB)
Gradivo ima več datotek! Več...

244.
Microstructural characterization of alkali-activated composites of lightweight aggregates (LWAs) embedded in alkali-activated foam (AAF) matrices
Katja Traven, Wolfgang Wisniewski, Mark Češnovar, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali-activated composites of lightweight aggregates (LWAs, with beneficial insulating properties) and alkali-activated foams (AAFs, higher added value products due to their production from waste materials at well below 100 ◦C) allow for the expectation of superior properties if a chemical bonding reaction or mechanical interlocking occurs during production. However, the interfaces between LWAs and an AAF have not been studied in detail so far. Chemical reactions are possible if the LWA contains an amorphous phase which can react with the alkaline activators of the AAF, increase the bonding, and thus, also their mechanical strengths. These, in turn, allow for an improvement of the thermal insulation properties as they enable a further density reduction by incorporating low density aggregates. This work features a first-detailed analyses of the interfaces between the LWAs’ expanded polystyrene, perlite, expanded clay and expanded glass, and the alkali-activated foam matrices produced using industrial slags and fly ash. Some are additionally reinforced by fibers. The goal of these materials is to replace cement by alkali-activated waste as it significantly lowers the environmental impact of the produced building components.
Ključne besede: alkali activated materials/geopolymers, light weight aggregates, SEM
Objavljeno v DiRROS: 20.06.2023; Ogledov: 370; Prenosov: 187
.pdf Celotno besedilo (4,49 MB)
Gradivo ima več datotek! Več...

245.
Combining mineralisation and thermal modification to improve the fungal durability of selected wood species
Rožle Repič, Andreja Pondelak, Davor Kržišnik, Miha Humar, Andrijana Sever Škapin, 2022, izvirni znanstveni članek

Povzetek: The development of non-biocidal and environmentally friendly systems to protect wood against biological decay has become a high priority in recent years. In the present study the impact of an innovative modification procedure, combining two environmentally friendly modification methods: thermal modification and mineralisation, using an aqueous solution of calcium acetoacetate as a precursor, on the fungal durability of wood was evaluated. European beechwood (Fagus sylvatica) and Norway sprucewood (Picea abies) were selected as model wood species. Wood samples were treated using either a single or combination of both methods and exposed to four different fungi: Gloeophyllum trabeum, Rhodonia placenta, Trametes versicolor and Pleurotus ostreatus. The effect of the different modifications on moisture content, dynamic vapour sorption, contact angle and pH value was also evaluated. Overall, the highest durability against Rhodonia placenta, Trametes versicolor and Pleurotus ostreatus was achieved through thermal modification in both wood species, while the combination of mineralisation and thermal modification has a synergistic effect against degradation by Gloeophyllum trabeum. In the case of beechwood the mass loss decreased from 41% for native to 6% for combined modified samples. We proved that the effectiveness of different treatment against fungal decay of wood were in strong dependence of their moisture content, dynamic vapour sorption, contact angle and pH values. The role of fungi on the morphology of the wood and on crystal structure of formed carbonate was investigated using SEM-EDS analysis.
Ključne besede: thermal modification, wood mineralization, fungal durability, environmentally friendly modification methods
Objavljeno v DiRROS: 20.06.2023; Ogledov: 356; Prenosov: 396
.pdf Celotno besedilo (3,55 MB)
Gradivo ima več datotek! Več...

246.
Investigation of the British pendulum calibration uncertainty by Monte Carlo simulation
Vid Primožič, Miha Hiti, 2022, izvirni znanstveni članek

Povzetek: The paper presents the evaluation of the calibration uncertainty of the British pendulum slip resistance tester using Monte Carlo simulation method. A mathematical model was produced which describes pendulum behavior based on its calibration parameters. The Monte Carlo simulation, programmed in Python, was used for simulating the effect of each of the calibration parameters adjustment within their tolerance intervals, with uniform and triangular probability distribution. Four different tolerance limits were compared: limits from a current international standard, a proposition with reduced limits from recent literature, and two novel propositions, one with reduced but easily achievable limits, and a second one for best practically achievable limits. The results of the simulation show a fundamental standard uncertainty contribution of about 2.8% for pendulum calibration according to current standard limits. Furthermore, they suggest a possible improvement to 0.5%–0.7% as its best practical direct calibration standard uncertainty for reduced limits.
Ključne besede: British pendulum, simulacija, Monte Carlo, merilna negotovost, odprti dostop
Objavljeno v DiRROS: 20.06.2023; Ogledov: 335; Prenosov: 185
.pdf Celotno besedilo (1,75 MB)
Gradivo ima več datotek! Več...

247.
Preparation of façade panels based on alkali-activated waste mineral wool, their characterization and durability aspects
Majda Pavlin, Barbara Horvat, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Mineral wool is a widely used insulation material and one of the largest components of construction and demolition waste, yet it mainly ends up in landfills. In this work, we explored the potential recycling of waste stone wool in the pilot production of alkali-activated façade panels. The current work shows mechanical properties, SEM-EDS and mercury intrusion porosimetry analyses for three different mix designs used for the preparation of façade panels. They are all composed of waste stone wool and differ in the amount of co-binders (local slag, lime, metakaolin and/or fly ash) selected by the preliminary studies. In this study, co-binders were added to increase early strength and improve the mechanical properties and freeze-thaw resistance. The mechanical properties of each were measured up to 256 days, different durability tests were executed, and, by evaluating the mechanical properties, microstructure and workability of the mortar, the most suitable mix was selected to be used for pilot production. In addition, the leaching test of the selected mixture showed no exceeded toxic trace elements and therefore got classified as non-hazardous waste after its use.
Ključne besede: alkali activation, waste mineral wool, SEM, XRF, XRD, mechanical strength
Objavljeno v DiRROS: 19.06.2023; Ogledov: 342; Prenosov: 147
.pdf Celotno besedilo (1,27 MB)
Gradivo ima več datotek! Več...

248.
The preparation and characterization of low-temperature foams based on the alkali activation of waste stone wool
Majda Pavlin, Barbara Horvat, Mark Češnovar, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Waste mineral wool represents a huge amount of construction and demolition waste that is still not adequately returned into the value chain but needs to be landfilled. In the present study, waste stone wool (SW) was evaluated for the preparation of alkali-activated foams. For this purpose SW was milled and sieved below 63 μm, then the activator (sodium silicate) and different amounts of foaming agent (hydrogen peroxide, H2O2), varying between 1 wt% and 3 wt%, were added to the slurry and cured in moulds at an elevated temperature (70 ◦ C) for three days. In this way, foamed, highly porous materials were obtained whose density and mechanical properties were influenced by the amount of foaming agent used. The densities obtained ranged between 1.4 and 0.5 g/cm3, with corresponding mechanical properties of between 12.6 and 1.5 MPa and total porosities in the range 37.8–78.6%, respectively. In the most porous samples with the total porosity of 78.6%, a thermal conductivity of 0.092 W/(m∙K) was confirmed. The study confirmed the suitability of waste mineral wool (in our case SW) as a precursor for alkali-activated foams with potential use in the construction sector or other industrial applications.
Ključne besede: alkali activation, waste mineral wool, mechanical strength, open access, alkalijska aktivacija, odpadna volna, SEM, XRF, XRD, mehanska trdnost, odprti dostop
Objavljeno v DiRROS: 19.06.2023; Ogledov: 276; Prenosov: 212
.pdf Celotno besedilo (9,47 MB)
Gradivo ima več datotek! Več...

249.
Sustainable alkali-activated slag binders based on alternative activators sourced from mineral wool and glass waste
Majda Pavlin, Katja Koenig, Jakob Koenig, Uroš Javornik, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: In the present study, four different locally available waste glass materials (bottle glass-BG, glass wool-GW, stone wool-SW and cathode-ray tube glass-CRTG) were treated with hot concentrated potassium hydroxide (KOH) in order to obtain alternative alkali activators (AAAs). We evaluated the suitability of the solutions obtained for use as AAAs in the production of AAMs. AAMs were prepared using electric arc furnace slag and selected AAAs with a higher content of dissolved Si. We evaluated the performance of the AAMs in comparison to that of slags activated with KOH or potassium-silicate (K-silicate). The compressive strength of the AAMs prepared with KOH-based AAAs were high when Si and Al were simultaneously abundant in the AAA (9.47 MPa when using the activator sourced from the CRTG), and low with the addition of KOH alone (1.97 MPa). The AAM produced using commercial K-silicate yielded the highest compressive strength (27.7 MPa). The porosity of the KOH-based AAM was lowest when an alternative BG-based activator was used (24.1%), when it was similar to that of the AAM prepared with a K-silicate. The BG-based activator had the highest silicon content (33.1 g/L), and NMR revealed that Si was present in the form of Q0, Q1 and Q2. The concentrations of toxic trace elements in the AAAs used for alkali activation of the slag were also determined, and leaching experiments were performed on the AAMs to evaluate the immobilisation potential of alkali-activated slag. In the SW AAAs the results show acceptable concentrations of trace and minor elements with respect to the regulations on waste disposal sites, while in the activators prepared from BG, CRTG and GW some elements exceeded the allowable limits (Pb, Ba, Sb, and As).
Ključne besede: alkali activated materials/geopolymers, alternative activators, NMR, leaching
Objavljeno v DiRROS: 08.06.2023; Ogledov: 334; Prenosov: 215
.pdf Celotno besedilo (2,26 MB)
Gradivo ima več datotek! Več...

250.
Flame retardant behaviour and physical-mechanical properties of polymer synergistic systems in rigid polyurethane foams
Branka Mušič, Nataša Knez, Janez Bernard, 2022, izvirni znanstveni članek

Povzetek: In the presented work, the influence of two flame retardants—ammonium polyphosphates and 2,4,6-triamino-1,3,5-triazine on the polyurethane foam (PUR) systems were studied. In this paper, these interactive properties are studied by using the thermal analytical techniques, TGA and DTA, which enable the various thermal transitions and associated volatilization to be studied and enable the connection of the results with thermal and mechanical analysis, as are thermal conductivities, compression and bending behavior, hardness, flammability, and surface morphology. In this way, a greater understanding of what the addition of fire retardants to polyurethane foams means for system flammability itself and, on the other hand, how this addition affects the mechanical properties of PUR may be investigated. It was obtained that retardants significantly increase the fire resistance of the PURs systems while they do not affect the thermal conductivity and only slightly decrease the mechanical properties of the systems. Therefore, the presented systems seem to be applicable as thermal insulation where low heat conductivity coupled with high flame resistance is required.
Ključne besede: flammability, polyurethane polymer, foams, thermal conductivity, mechanical properties, open access
Objavljeno v DiRROS: 08.06.2023; Ogledov: 418; Prenosov: 183
.pdf Celotno besedilo (10,71 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.61 sek.
Na vrh