Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (flame spread) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity
Sandra L. Olson, Gary A. Ruff, Paul V. Ferkul, Jay C. Owens, John Easton, Ya-Ting T. Liao, James S. T'ien, Balazs Toth, Grunde Jomaas, A. Carlos Fernandez-Pello, Guillaume Legros, Augustin Guibaud, Osamu Fujita, Nikolay Smirnov, David L. Urban, 2023, izvirni znanstveni članek

Povzetek: Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes.
Ključne besede: concurrent flame spread, microgravity, duct size, sample size, cellulose fabrics
Objavljeno v DiRROS: 08.01.2024; Ogledov: 167; Prenosov: 35
.pdf Celotno besedilo (2,13 MB)
Gradivo ima več datotek! Več...

2.
Flame spread behaviour of Polydimethylsiloxane (PDMS) membranes in 1 g and µg environments
Wilson Ulises Rojas Alva, Frederik Møller-Poulsen, Sze Lok Man, Cameron Creamer, David Hanna, Grunde Jomaas, 2022, izvirni znanstveni članek

Povzetek: Diffusion flame behaviour and silica ash (SiO2) production were experimentally studied for various Polydimethylsiloxane (PDMS) membrane thicknesses (0.125 mm to 1.0 mm) in normal gravity and during microgravity flight experiments. The flames were established on vertical samples (300 mm in length) and subjected to either opposed or concurrent forced flows (both laminar and turbulent), assimilating the NASA Test 1 that is in use for spacecraft material selection. The opposed flame spread rate was observed to be steady and could be estimated using classical theory. Under concurrent flow, the flame spread rate was only steady for very high forced flows. The opposed flame-spread rate ranged from 0.5 to 1.5 mm/s, while the concurrent case ranged between 0.1 and 12 mm/s. The transport of silica ash (SiO2) was found to affect the heat balance of the concurrent flame spread in a manner that resulted in unsteady flame spread. For opposed flame spread, on the other hand, the transport of silica ash showed to be irrelevant. The extinction behaviour for the concurrent flame spread was heavily dominated by the transport of silica-ash, while for opposed flames, extinction was due to kinetics (at high forced flows). In microgravity environments, the transport and deposition of silica ash is anticipated to dominate flame spread and near-limit as well. These results suggest that silica-based products might be less flammable in microgravity than other similar materials such as common thermoplastics (PP or PE) used as wire jackets.
Ključne besede: silicone burning, spacecraft fire safety, flame spread, near-limit, silica-ash
Objavljeno v DiRROS: 13.11.2023; Ogledov: 312; Prenosov: 80
.pdf Celotno besedilo (1,61 MB)
Gradivo ima več datotek! Več...

3.
Experimental study of the fire dynamics in a semi-enclosure formed by photovoltaic (PV) installations on flat roof constructions
Jens Steemann Kristensen, Benjamin Jacobs, Grunde Jomaas, 2022, izvirni znanstveni članek

Povzetek: Flame spread experiments upon a BROOF(t4) compliant flat roof mock-up located below a vertical barrier were carried out for variations in gap height, inclination, subjacent insulation material, and the barrier type (stainless-steel board or photovoltaic (PV) module). A binary flame spread scenario was identified, where re-radiation from the flame facilitated self-sustained flame spread if the gap height to the horizontal panel was below 10 cm for the stainless-steel board and 11 cm for PV modules. These were defined as the critical gap heights. Inclination of the PV modules increased the critical gap height and caused a 25% faster flame spread rate (FSR) than the FSR below horizontal modules with the same gap height at the location of ignition. The faster FSR for inclined modules caused a 40% reduction of the maximum temperature measured at a depth of 70 mm in the insulation materials (242°C). Based on temperatures measured in the insulation materials, the 60 mm polyisocyanurate (PIR) insulation performed slightly better than the 50 mm mineral wool insulation. However, it is expected that the mineral wool would outperform the PIR insulation if tested with the same thickness, as it insulates significantly better at high temperatures. Finally, no sustained flame spread was observed on the back side polymer sheet of the PV modules, but one of the three PV module brands produced burning droplets. Based on the experiments, it can be concluded that the current standards are inadequate as the introduction of a PV system on a compliant roof construction enables flame spread.
Ključne besede: photovoltaic (PV) installations, flame spread, fire dynamics, property protection, open access
Objavljeno v DiRROS: 31.05.2023; Ogledov: 313; Prenosov: 241
.pdf Celotno besedilo (2,92 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.1 sek.
Na vrh