Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Tadeja Kosec) .

21 - 30 / 42
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
21.
Tribocorrosive study of new and in vivo exposed nickel titanium and stainless steel orthodontic archwires
Tadeja Kosec, Petra Močnik, Uroš Mezeg, Andraž Legat, Maja Ovsenik, Monika Jenko, John T. Grant, Jasmina Primožič, 2020, izvirni znanstveni članek

Povzetek: The surface, corrosion and wear properties of new and in vivo exposed nickel titanium (NiTi) and stainless steel (SS) archwires used in orthodontic treatment were investigated. Electrochemical and tribo-electrochemical tests in artificial saliva were performed in order to define corrosion properties and to estimate wear rate of new and in vivo exposed NiTi and SS archwires. The surface chemical analysis of the passive film on the NiTi and SS archwires before and after tribocorrosion tests was performed by Auger Electron Spectroscopy (AES). In vivo exposed NiTi and SS archwires had better electrochemical properties than new archwires due to the protective nature of oral deposits. Total wear and coefficients of friction were higher among in vivo exposed archwires and higher in NiTi archwires in comparison to SS archwires. The estimated thickness of the TiO2 passive film on as-received NiTi is 8 nm, while the passive Cr2O3 film on as-received SS is just 1–2 nm. On in vivo exposed NiTi archwire, a 60–80 nm thick organic film/dental plaque was observed, and on SS, it was thinner, at about 60 nm. This research shows the importance of combining AES with electrochemical testing, to characterize tribocorrosive properties of NiTi and SS orthodontic archwires.
Ključne besede: archwires, NiTi, stainless steel, wear
Objavljeno v DiRROS: 24.08.2023; Ogledov: 265; Prenosov: 114
.pdf Celotno besedilo (2,18 MB)
Gradivo ima več datotek! Več...

22.
Corrosion behavior of steel in pore solutions extracted from different blended cements
Miha Hren, Tadeja Kosec, Andraž Legat, 2020, izvirni znanstveni članek

Povzetek: Mortar specimens made from four different types of cement, CEM I, CEM II, CEM III, and CEM IV, were prepared and pore solutions extracted. Three different types of exposure were studied: noncarbonated without chlorides, noncarbonated with chlorides, and carbonated with chlorides. Various electrochemical methods (linear polarization, potentiodynamic polarization measurements) were implemented to characterize the processes of corrosion on steel in these solutions. The type and extent of corrosion products were evaluated by means of various spectroscopic techniques. Specific differences in the type and extent of corrosion damage were determined and compared for each of the extracted pore solutions from the different blended cements. An attempt was made to classify these differences in comparison with the reference cement (CEM I) and in relation to the different types of exposure.
Ključne besede: corrosion, steel in pore water, blended cements, Raman Spectroscopy
Objavljeno v DiRROS: 22.08.2023; Ogledov: 274; Prenosov: 131
.pdf Celotno besedilo (1,25 MB)
Gradivo ima več datotek! Več...

23.
Monitoring the corrosion of steel in concrete exposed to a marine environment
Nina Gartner, Tadeja Kosec, Andraž Legat, 2020, izvirni znanstveni članek

Povzetek: Reinforced concrete structures require continuous monitoring and maintenance to prevent corrosion of the carbon steel reinforcement. In this work, concrete columns with carbon and stainless steel reinforcements were exposed to a real marine environment. In order to monitor the corrosion processes, two types of corrosion probes were embedded in these columns at different height levels. The results from the monitoring of the probes were compared to the actual corrosion damage in the different exposure zones. Electrical resistance (ER) probes and coupled multi-electrodes (CMEs) were shown to be promising methods for long-term corrosion monitoring in concrete. Correlations between the different exposure zones and the corrosion processes of the steel in the concrete were found. Macrocell corrosion properties and the distribution of the separated anodic/cathodic places on the steel in chloride-contaminated concrete were addressed as two of the key issues for understanding the corrosion mechanisms in such environments. The specific advantages and limitations of the tested measuring techniques for long-term corrosion monitoring were also indicated. The results of the measurements and the corrosion damage evaluation clearly confirmed that the tested stainless steels (AISI 304 and AISI 304L) in a chloride-contaminated environment behave significantly better than ordinary carbon steel, with corrosion rates from 110% to 9500% lower in the most severe (tidal) exposure conditions.
Ključne besede: corrosion in concrete, steel reinforcement, long-term exposure, field exposure, electrical resistance (ER) probes, coupled multi-electrodes
Objavljeno v DiRROS: 21.08.2023; Ogledov: 252; Prenosov: 158
.pdf Celotno besedilo (4,42 MB)
Gradivo ima več datotek! Več...

24.
Effect of deep cryogenic treatment on corrosion properties of various high-speed steels
Jure Voglar, Živa Novak, Patricia Jovičević Klug, Bojan Podgornik, Tadeja Kosec, 2021, izvirni znanstveni članek

Povzetek: The aim of the study was to evaluate the corrosion properties of three different grades of high-speed steel following a heat treatment procedure involving deep cryogenic treatment after quenching and to investigate how these properties are connected to the microstructure and hard- ness of the material. The hardness of steels was measured, and microstructural properties were determined through observation of the metallographically prepared steels using scanning electron microscopy. These studies were complemented corrosion evaluation by the use of corrosion potential measurement and linear polarization measurement of steels in a sodium tetraborate buffer at pH 10. The results showed that the deep cryogenic procedure of high-speed steel changed the microstructure and consequently affected the hardness of the investigated steels to different extents, depending on their chemical composition. Corrosion studies have confirmed that some high-speed steels have improved corrosion properties after deep cryogenic treatment. The most important improvement in corrosion resistance was observed for deep cryogenically treated high-speed steel EN 1.3395 (M3:2) by 31% when hardened to high hardness values and by 116% under lower hardness conditions. The test procedure for differentiating corrosion properties of differently heat-treated tool steels was established alongside the investigation.
Ključne besede: deep cryogenic treatment, corrosion, microstructure, hardness
Objavljeno v DiRROS: 01.08.2023; Ogledov: 277; Prenosov: 144
.pdf Celotno besedilo (5,82 MB)
Gradivo ima več datotek! Več...

25.
Effect of the microstructural properties of copper on corrosion performance
Tadeja Kosec, Jure Voglar, Petra Močnik, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: The aim of the study was to define the influence of microstructural properties on the electrochemical properties of copper in four different forms: copper in sheet form, copper doped with phosphorus, electroplated copper and copper wire. Open circuit potential and polarization resistance measurements were carried out in order to determine the electrochemical properties and corrosion rates of copper in 0.1 M NaCl solution in oxic conditions at ambient temperature. Statistical evaluation of the electrochemical data was performed in order to differentiate between the various forms of copper samples. Microstructural and electrochemical investigations were combined with electron microscopy and Raman analysis of the corrosion products after immersion of the copper samples in a 0.1 M NaCl solution for 30 days. The various morphologies of copper corrosion products were identified and analyzed by Raman spectroscopy for the various forms of copper.
Ključne besede: copper, microstructura, corrosion, Raman
Objavljeno v DiRROS: 19.07.2023; Ogledov: 302; Prenosov: 145
.pdf Celotno besedilo (2,24 MB)
Gradivo ima več datotek! Več...

26.
Corrosion protection of brown and green patinated bronze
Tadeja Kosec, Živa Novak, Erika Švara Fabjan, Luka Škrlep, Andrijana Sever Škapin, Polonca Ropret, 2021, izvirni znanstveni članek

Povzetek: Bronze surfaces, whether bare or patinated, tend to change when exposed to an outdoor atmosphere. Art made of bronze which is exposed to the outdoors is usually artificially patinated. This patina changes when exposed to rain, especially in polluted rain, where sulphuric, nitric or carbonic acids are present. In order to gain optimal protection of different patinas and consequently reduce the patina changes over the time different protection systems were developed, tested and tailored. Three types of patina (brown, green sulphate, and green persulphate) were prepared, protected and subsequently studied. The protections were based on two coatings (i) fluoropolymer based coating (FA-MS) and (ii) newly developed fluoropolymer based coating with addition of mercaptopropyl groups, named as alternative fluoropolymer coating (FA-MS-SH). Both the pure patinas applied on bronze surfaces as well as the bare bronze were electrochemically tested, first unprotected and then following the application of two different types of protection. After the protection was applied to the pa- tinas, the change in colour was defined. Different techniques were utilised in order to define the morphology and structure of the patinas, as well as the change in colour following application of the coating. It was shown that a fluoropolymer coating (FA-MS) provided the most efficient protection to bare bronze and the sulphate patina, while a newly proposed alternative fluoropolymer coating (FA-MS-SH) offered good protection to bare and brown patinated bronze. A mechanism for the protection of bare and patinated bronze was suggested.
Ključne besede: bronze, patina, protection
Objavljeno v DiRROS: 17.07.2023; Ogledov: 293; Prenosov: 174
.pdf Celotno besedilo (5,46 MB)
Gradivo ima več datotek! Več...

27.
Pitting corrosion on highly alloyed stainless steels in dilute sulphuric acid containing sodium chloride
Elina Huttunen-Saarivirta, Elisa Isotahdon, Zaiqing Que, M. Lindgren, Ahmad Mardoukhi, Jean-Baptiste Jorcin, Petra Močnik, Tadeja Kosec, Yassine El Ouazari, Sukanya Hägg Mameng, Lena Wegrelius, 2023, izvirni znanstveni članek

Povzetek: Stainless steels are widely used in industrial assets and equipment. Despite their good corrosion resistance under a wide range of operating conditions, there is the possibility of pitting corrosion in the presence of chlorides. However, very few studies have identified the safe operating conditions for various high-alloyed stainless steel grades by comparing their pitting susceptibility. In this research, the susceptibility to pitting attack of five stainless steels with austenitic and duplex microstructures was examined in dilute sulphuric acid solution with varying amounts of NaCl at the temperatures of 50, 90 and 130◦C. Based on potentiodynamic polarization scans, none of the test materials underwent pitting corrosion at 50◦C, but differences in susceptibility to pitting attack were clear between the test materials and NaCl concentrations at the temperature of 90◦C, and further tem- perature increase facilitated uniform corrosion. 28-day immersion tests at 90◦ C confirmed the pitting suscepti- bility of duplex grades 1.4662 (PREN 33) and 1.4462 (PREN 35) in the presence of at least 2000 mg/L NaCl, but not the susceptibility of a corresponding austenitic grade 1.4539 (PREN 34). The grades 1.4547 (PREN 43) and 1.4410 (PREN 44) were not susceptible to pitting corrosion under any of the studied conditions. The results from materials microstructural and electrochemical characterization are presented and discussed in this paper.
Ključne besede: stainless steel, austenitic stainless steel, duplex stainless steel, pitting atttack
Objavljeno v DiRROS: 12.07.2023; Ogledov: 307; Prenosov: 383
.pdf Celotno besedilo (42,24 MB)
Gradivo ima več datotek! Več...

28.
Sensor development for corrosion monitoring of stainless steels in H2SO4 solutions
Miha Hren, Tadeja Kosec, Mari Lindgren, Elina Huttunen-Saarivirta, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: Equipment made of different stainless steels is often used in the hydrometallurgical processing industry. In this study, an electrical resistance sensor was developed for monitoring corrosion in acidic solutions at high temperature. Two types of stainless steel were used as the electrode materials, namely grade 316L stainless steel (EN 1.4404) and grade 2507 duplex stainless steel (EN 1.4410). The materials and sensors were exposed to a 10% H2SO4 solution containing 5000 mg/L of NaCl at various temperatures. Results from the sensors were verified using electrochemical techniques and postexposure examination. Results showed that the microstructure played an important role in the interpretation of corrosion rates, highlighting the importance of using an appropriate stainless steel for the production of sensors. Electrochemical tests and postexposure examination both showed that the grade 2507 had a significantly lower corrosion rate compared to the grade 316L. Under industrial‑process conditions, the results for the grade 2507 sensor were promising with respect to sensor durability and performance, despite the extremely harsh operating environment.
Ključne besede: stainless steel, hydrometallurgical industry, sulphuric acid, electrical resistance sensor, corrosion
Objavljeno v DiRROS: 05.07.2023; Ogledov: 326; Prenosov: 183
.pdf Celotno besedilo (5,12 MB)
Gradivo ima več datotek! Več...

29.
Characterizing steel corrosion in different alkali-activated mortars
Nina Gartner, Miha Hren, Tadeja Kosec, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: Alkali-activated materials (AAMs) present a promising potential alternative to ordinary Portland cement (OPC). The service life of reinforced concrete structures depends greatly on the corrosion resistance of the steel used for reinforcement. Due to the wide range and diverse properties of AAMs, the corrosion processes of steel in these materials is still relatively unknown. Three different alkali-activated mortar mixes, based on fly ash, slag, or metakaolin, were prepared for this research. An ordinary carbon-steel reinforcing bar was installed in each of the mortar mixes. In order to study the corrosion properties of steel in the selected mortars, the specimens were exposed to a saline solution in wet/dry cycles for 17 weeks, and periodic electrochemical impedance spectroscopy (EIS) measurements were performed. The propagation of corrosion damage on the embedded steel bars was followed using X-ray computed microtomography (XCT). Periodic EIS measurements of the AAMs showed different impedance response in individual AAMs. Moreover, these impedance responses also changed over the time of exposure. Interpretation of the results was based on visual and numerical analysis of the corrosion damages obtained by XCT, which confirmed corrosion damage of varying type and extent on steel bars embedded in the tested AAMs.
Ključne besede: corrosion, alkali-activated mortars, steel reinforcement, electrochemical impedance spectroscopy, X-ray computed microtomography, visual analysis
Objavljeno v DiRROS: 05.07.2023; Ogledov: 367; Prenosov: 172
.pdf Celotno besedilo (7,00 MB)
Gradivo ima več datotek! Več...

30.
Modelling the electrochemical transients during repassivation under open-circuit conditions in a neutral solution
Bojan Zajec, Tadeja Kosec, Andraž Legat, 2022, izvirni znanstveni članek

Povzetek: The responses of the current and the coupled potential to rapid depassivation have been studied on a three-electrode system under open-circuit conditions. Passivated AISI 304 stainless steel in low- and high-conductivity solutions of NaSO has been depassivated with a single, rapid scratch over the small fraction of surface of the working electrode (WE). Single- and dual-WE configurations have been implemented. Once the surface is scratched, the current and potential transients exhibit a delayed maximum and minimum, respectively, in contrast to the outcome of more common potentiostatic scratching experiments. A simple model based on the equivalent circuit has been developed to predict the observed transients and provides clear relations between the features of the transient and the parameters of the electrolyte and the electrodes. The interfacial capacitance of the electrodes’ passive surfaces proves crucial for the shapes of the observed potential and current transients. It is shown that this capacitance temporarily provides the majority of the charge for repassivation under open-circuit conditions. Possible sources of specific discrepancies between the model and the measured transients are indicated.
Ključne besede: repassivation, open circuit conditions, transient, modelling, interfacial capacitance
Objavljeno v DiRROS: 21.06.2023; Ogledov: 326; Prenosov: 150
.pdf Celotno besedilo (1,75 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.34 sek.
Na vrh