Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Ana Vučurović) .

1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Virome analysis of irrigation water sources provides extensive insights into the diversity and distribution of plant viruses in agroecosystems
Olivera Maksimović, Katarina Bačnik, Mark Paul Selda Rivarez, Ana Vučurović, Nataša Mehle, Maja Ravnikar, Ion Gutiérrez-Aguirre, Denis Kutnjak, 2024, izvirni znanstveni članek

Povzetek: Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.
Ključne besede: plant viruses, environmental water testing, high-throughput sequencing, agroecosystems, irrigation water, virome
Objavljeno v DiRROS: 29.03.2024; Ogledov: 124; Prenosov: 51
URL Povezava na datoteko
Gradivo ima več datotek! Več...

2.
Increased diversity of citrus tristeza virus in Europe
Jelena Zindović, Miroslav Čizmović, Ana Vučurović, Paolo Margaria, Dijana Škorić, 2023, izvirni znanstveni članek

Povzetek: This study investigated the genetic diversity of citrus tristeza virus (CTV) isolates from Montenegro and Croatia, European countries with the northernmost citrus growing regions situated on the Eastern Adriatic coast. Fifteen complete or nearly complete CTV genomes were reconstructed from high-throughput sequencing of samples collected in distinct municipalities in Montenegro and Opuzen municipality in Croatia. Phylogenetic analyses assigned some of the sequences to VT and T30 strains, previously recorded in Europe, while remarkably other isolates were placed in S1 and RB groups, which have not been reported in Europe so far. In addition, a new phylogenetic lineage including only isolates from Montenegro was delineated and tentatively proposed as the MNE cluster. Recombination analysis revealed evidence of 11 recombination events in the sequences obtained in this study, between isolates of related strains, within isolates of the same strain, and between distant strains. These findings show that CTV diversity in Europe is higher than reported before and calls for the re-evaluation of management strategies.
Ključne besede: complete genomes, genotyping, citrus tristeza virus, CTV, non-EU strain
Objavljeno v DiRROS: 29.03.2024; Ogledov: 113; Prenosov: 40
URL Povezava na datoteko
Gradivo ima več datotek! Več...

3.
Epidemiology of Flavescence dorée and hazelnut decline in Slovenia : geographical distribution and genetic diversity of the associated 16SrV phytoplasmas
Zala Kogej Zwitter, Gabrijel Seljak, Tjaša Jakomin, Jakob Brodarič, Ana Vučurović, Sandra Pedemay, Pascal Salar, Sylvie Malembic-Maher, Xavier Foissac, Nataša Mehle, 2023, izvirni znanstveni članek

Povzetek: Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper Scaphoideus titanus. European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper Orientus ishidae have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the map gene. The most prevalent map genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84 % of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6 %), M51 (3 %), M50 (2 %) and M122 (1 %). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of O. ishidae leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in O. ishidae. Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with S. titanus transmission.
Ključne besede: phytoplasmas, haselnuts, grapevine, Flavescence dorée, epidemiology, plant disease
Objavljeno v DiRROS: 26.07.2023; Ogledov: 360; Prenosov: 188
URL Povezava na datoteko
Gradivo ima več datotek! Več...

4.
In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem
Mark Paul Selda Rivarez, Anja Pecman, Katarina Bačnik, Olivera Maksimović, Ana Vučurović, Gabrijel Seljak, Nataša Mehle, Ion Gutiérrez-Aguirre, Maja Ravnikar, Denis Kutnjak, 2023, izvirni znanstveni članek

Povzetek: Background: In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. Results: Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. Conclusions: We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies.
Ključne besede: tomato, weed, virus, viroid, virome, virus discovery, virus diversity, phylogenetics, metagenomics, viromics
Objavljeno v DiRROS: 13.04.2023; Ogledov: 582; Prenosov: 128
URL Povezava na datoteko

Iskanje izvedeno v 0.17 sek.
Na vrh