Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (rare genetic diseases) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Gene therapy of rare diseases as a milestone in medicine : overview of the field and report on initial experiences in Slovenia
Urh Grošelj, Marko Kavčič, Ana Drole Torkar, Jan Kafol, Duško Lainšček, Roman Jerala, Matjaž Sever, Samo Zver, Gregor Serša, Maja Čemažar, Primož Strojan, Aleš Grošelj, Mojca Žerjav-Tanšek, Špela Miroševič, Simona Ivančan, Tomaž Prelog, David Gosar, Jasna Oražem, Matej Mlinarič, Sara Bertok, Jernej Kovač, Jana Kodrič, Saba Battelino, Marko Pokorn, Alojz Ihan, Janez Jazbec, Tadej Battelino, Damjan Osredkar, 2025, pregledni znanstveni članek

Povzetek: Gene therapy has transitioned from a long-awaited promise to a clinical reality, offering transformative treatments for rare congenital diseases and certain cancers, which have a significant impact on patients’ lives. Current approaches focus on gene replacement therapy, either in vivo or ex vivo, mostly utilizing viral vectors to deliver therapeutic genes into target cells. However, refining these techniques is essential to overcome challenges and complications associated with gene therapy to ensure long-term safety and efficacy. Slovenia has witnessed significant advancements in this field since 2018, marked by successful gene therapy trials and treatments for various rare diseases. Significant strides have been made in the field of gene therapy in Slovenia, treating patients with spinal muscular atrophy and rare metabolic disorders, including the pioneering work on CTNNB1 syndrome. Additionally, immune gene therapy, exemplified by IL-12 adjuvant therapy for cancer, has been a focus of research in Slovenia. Through patient-centred initiatives and international collaborations, researchers in Slovenia are advancing preclinical research and clinical trials, paving the way for accessible gene therapies. Establishing clinical infrastructure and genomic diagnostics for rare diseases is crucial for gene therapy implementation. Efforts in this regard in Slovenia, including the establishment of a Centre for Rare Diseases, Centre for the Technologies of Gene and Cell Therapy, and rapid genomic diagnostics, demonstrate a commitment to comprehensive patient care. Despite the promises of gene therapy, challenges remain, including cost, distribution, efficacy, and long-term safety. Collaborative efforts are essential to address these challenges and ensure equitable access to innovative therapies for patients with rare diseases.
Ključne besede: gene therapy, rare genetic diseases, Slovenia, CAR-T cells, cancer, immune gene therapy
Objavljeno v DiRROS: 04.12.2025; Ogledov: 160; Prenosov: 124
.pdf Celotno besedilo (2,18 MB)
Gradivo ima več datotek! Več...

2.
Genomic reanalysis of a pan-European rare-disease resource yields new diagnoses
Steven Laurie, Wouter Steyaert, Elke De Boer, Kiran Polavarapu, Nika Schuermans, Anna K. Sommer, German Demidov, Aleš Maver, Borut Peterlin, 2025, izvirni znanstveni članek

Povzetek: Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.5% genomes), and performed systematic reanalysis for 6,447 individuals (3,592 male, 2,855 female) with previously undiagnosed rare diseases from 6,004 families. We established a collaborative, two-level expert review infrastructure that allowed a genetic diagnosis in 506 (8.4%) families. Of 552 disease-causing variants identified, 464 (84.1%) were single-nucleotide variants or short insertions/deletions. These variants were either located in recently published novel disease genes (n = 67), recently reclassified in ClinVar (n = 187) or reclassified by consensus expert decision within Solve-RD (n = 210). Bespoke bioinformatics analyses identified the remaining 15.9% of causative variants (n = 88). Ad hoc expert review, parallel to the systematic reanalysis, diagnosed 249 (4.1%) additional families for an overall diagnostic yield of 12.6%. The infrastructure and collaborative networks set up by Solve-RD can serve as a blueprint for future further scalable international efforts. The resource is open to the global rare-disease community, allowing phenotype, variant and gene queries, as well as genome-wide discoveries.
Ključne besede: rare diseases, identification, interpretation, genetic diagnosis, genomic variants
Objavljeno v DiRROS: 17.11.2025; Ogledov: 138; Prenosov: 77
.pdf Celotno besedilo (10,60 MB)
Gradivo ima več datotek! Več...

3.
Unraveling the complexity of skeletal dysplasias in the national health system
Dorra Najjar, Aleš Maver, Ana Marija Peterlin, Helena Jaklič, Borut Peterlin, 2025, izvirni znanstveni članek

Povzetek: Introduction: Skeletal dysplasia (SD) is a large and heterogeneous group of rare genetic disorders that affects bone and cartilage growth. These disorders are diagnosed based on radiographic, clinical, and molecular criteria. However, the diagnostics is challenging due to clinical and genetic heterogeneity. We present the experience of systematic use of comprehensive genetic testing in the national health system and the molecular epidemiology of SD in Slovenia. Methods: We retrospectively reviewed 470 patients with clinical features of SD, including prenatal, childhood, and adult patients referred for diagnostic genetic evaluation to the national genetic reference center over ten years. In 262 patients, whole exome or whole genome sequencing was performed, while direct gene sequencing was performed in 208 patients with a specific clinical diagnosis. Results: A definitive genetic diagnosis using NGS was achieved in 50% (n=131) of patients. Among the positive cases, 49.61% initially presented with a nonspecific diagnosis of SD, and genetic testing contributed to establishing the diagnosis. Moreover, we demonstrated high genetic heterogeneity in our SD cohort with 66 distinct causative genes, resulting in different types of SD. In detail, we detected 132 causative variants, of which 29 were novel, which expanded the mutational spectrum of SD. Furthermore, pathogenic copy number variants (CNVs) were identified in 4.55% of the total number of variants, highlighting the importance of CNV analysis in expanding the yield of molecular diagnosis of SD. Conclusion: With the systematic use of WES and WGS, we have significantly improved the diagnostic yield of SD in the national health system and access to genetic testing. Moreover, we found significant genetic heterogeneity, and we report the genetic epidemiology of SD in the Slovenian population.
Ključne besede: CNV, copy number variants, NGS, next-generation sequencing, diagnostic yield, molecular pathology, prenatal diagnosis, rare genetic diseases, skeletal dysplasia
Objavljeno v DiRROS: 10.11.2025; Ogledov: 190; Prenosov: 90
.pdf Celotno besedilo (1,11 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh