Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (performance-based design) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Estimating the effective char depth in structural timber elements exposed to natural fires, considering the heating and cooling phase
Andrea Lucherini, Daniela Šejnová Pitelková, Vladimír Mózer, 2025, izvirni znanstveni članek

Povzetek: This research study investigates the effect of different heating and cooling regimes on the effective cross-section of timber elements exposed to natural fires. An advanced calculation method based on a 1D finite-difference heat transfer model and effective thermo-physical properties is adopted to analyse the heat penetration and the consequent reduction in mechanical properties. In particular, the research focuses on the evolution and penetration speed of the char depth (300 ◦C isotherm) and zero-strength layer (determined through in-depth temperatures and reduced mechanical properties). Results reveal how the char depth mainly develops during the heating phase, with non-negligible contributions from the cooling phase. In contrast, the zero-strength layer increases throughout the whole fire exposure, particularly during cooling and, possibly, after the end of the cooling phase. In general, the heating phase contributes about 2/3 to the total effective char depth, while the cooling phase about 1/3. The most challenging conditions were found for the fires of the longest durations (heating and overall), corresponding to low ventilation and high fuel load density conditions. The study emphasises the necessity of incorporating the cooling phase in performance-based methodologies for fire-safe timber structures to avoid under-estimating heat penetration effects.
Ključne besede: timber structures, fire safety, charring, zero-strength layer, natural fire, heating, cooling, structural fire engineering, performance-based design
Objavljeno v DiRROS: 22.11.2024; Ogledov: 114; Prenosov: 425
.pdf Celotno besedilo (6,39 MB)
Gradivo ima več datotek! Več...

2.
Modelling intumescent coatings for the fire protection of structural systems : a review
Andrea Lucherini, Donatella de Silva, 2024, pregledni znanstveni članek

Povzetek: Purpose Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review. Design/methodology/approach Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity. Findings The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs. Research limitations/implications Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems. Originality/value The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.
Ključne besede: intumescent coatings, fire protection, modelling, structural fire engineering, fire safety, performance-based design
Objavljeno v DiRROS: 17.04.2024; Ogledov: 507; Prenosov: 296
.pdf Celotno besedilo (720,31 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 1.09 sek.
Na vrh