Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (virus) .

21 - 30 / 61
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
21.
Structural basis for the multitasking nature of the potato virus Y coat protein
Andreja Kežar, Luka Kavčič, Martin Pólak, Jiři Nováček, Ion Gutiérrez-Aguirre, Magda Tušek-Žnidarič, Anna Coll Rius, Katja Stare, Kristina Gruden, Maja Ravnikar, David Pahovnik, Ema Žagar, Franci Merzel, Gregor Anderluh, Marjetka Podobnik, 2019, izvirni znanstveni članek

Povzetek: Potato virus Y (PVY) is among the most economically important plant pathogens. Using cryoelectron microscopy, we determined the near-atomic structure of PVY’s flexuous virions, revealing a previously unknown lumenal interplay between extended carboxyl-terminal regions of the coat protein units and viral RNA. RNA–coat protein interactions are crucial for the helical configuration and stability of the virion, as revealed by the unique near-atomic structure of RNA-free virus-like particles. The structures offer the first evidence for plasticity of the coat protein’s amino- and carboxyl-terminal regions. Together with mutational analysis and in planta experiments, we show their crucial role in PVY infectivity and explain the ability of the coat protein to perform multiple biological tasks. Moreover, the high modularity of PVY virus-like particles suggests their potential as a new molecular scaffold for nanobiotechnological applications.
Ključne besede: plant pathogens, potato virus Y, viral RNA
Objavljeno v DiRROS: 23.07.2024; Ogledov: 148; Prenosov: 130
.pdf Celotno besedilo (4,43 MB)
Gradivo ima več datotek! Več...

22.
Cold atmospheric plasma as a novel method for inactivation of potato virus Y in water samples
Arijana Filipić, Gregor Primc, Rok Zaplotnik, Nataša Mehle, Ion Gutiérrez-Aguirre, Maja Ravnikar, Miran Mozetič, Jana Žel, David Dobnik, 2019, izvirni znanstveni članek

Povzetek: While one of the biggest problems we are facing today is water scarcity, enormous quantities of water are still being used in irrigation. If contaminated, this water can act as an effective pathway for the spread of disease-causing agents, like viruses. Here, we present a novel, environmentally friendly method known as cold atmospheric plasma for inactivation of viruses in water used in closed irrigation systems. We measured the plasma-mediated viral RNA degradation as well as the plasma-induced loss of viral infectivity using potato virus Y as a model virus due to its confirmed water transmissibility and economic as well as biological importance. We showed that only 1 min of plasma treatment is sufficient for successful inactivation of viruses in water samples with either high or low organic background. The plasma-mediated inactivation was efficient even at markedly higher virus concentrations than those expected in irrigation waters. Obtained results point to reactive oxygen species as the main mode of viral inactivation. Our laboratory-scale experiments confirm for the first time that plasma has an excellent potential as the eukaryotic virus inactivation tool for water sources and could thus provide a cost-effective solution for irrigation mediated plant virus transmission. The outstanding inactivation efficiency demonstrated by plasma treatments in water samples offers further expansions of its application to other water sources such as reused wastewater or contaminated drinking waters, as well as other plant, animal, and human waterborne viruses, ultimately leading to the prevention of water scarcity and numerous human, animal, and plant infections worldwide.
Ključne besede: cold atmospheric plasma, potato virus Y, virus inactivation, water decontamination
Objavljeno v DiRROS: 23.07.2024; Ogledov: 123; Prenosov: 94
.pdf Celotno besedilo (985,33 KB)
Gradivo ima več datotek! Več...

23.
Precision transcriptomics of viral foci reveals the spatial regulation of immune-signaling genes and identifies RBOHD as an important player in the incompatible interaction between potato virus Y and potato
Tjaša Lukan, Maruša Pompe Novak, Špela Baebler, Magda Tušek-Žnidarič, Aleš Kladnik, Maja Križnik, Andrej Blejec, Maja Zagorščak, Katja Stare, Barbara Dušak, Anna Coll Rius, Stephan Pollmann, Karolina Morgiewicz, Jacek Hennig, Kristina Gruden, 2020, izvirni znanstveni članek

Povzetek: Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.
Ključne besede: immune signaling network, NADPH oxidase RBOHD, reactive oxygen species, salicylic acid, Sola-num tuberosum (potato), spatiotemporal response analysis, virus resistance, Potyvirus
Objavljeno v DiRROS: 22.07.2024; Ogledov: 135; Prenosov: 114
.pdf Celotno besedilo (2,87 MB)
Gradivo ima več datotek! Več...

24.
One-step reverse-transcription digital PCR for reliable quantification of different pepino mosaic virus genotypes
Nataša Mehle, Larisa Gregur, Alexandra Bogožalec Košir, David Dobnik, 2020, izvirni znanstveni članek

Povzetek: In recent years, pepino mosaic virus (PepMV) has rapidly evolved from an emerging virus to an endemic pathogen, as it causes significant loses to tomato crops worldwide. At present, the main control strategy for prevention of PepMV disease in tomato production remains based on strict hygiene measures. To prevent damage caused by PepMV, cross-protection is used in some countries. Reliable characterisation, detection and quantification of the pathogen are vital for disease control. At present, reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR) is generally used for this purpose. However, quantitative use of RT-qPCR is linked to standardised reference materials, which are not available for PepMV. In addition, many factors can influence RT-qPCR efficiencies and lead to lower accuracy of the quantification. In this study, well-characterised PepMV-genotype-specific RT-qPCR assays were transferred to two digital PCR (dPCR) platforms. dPCR-based assays allow absolute quantification without the need for standard curves, and due to the binary nature of the reaction, dPCR also overcomes many of the other drawbacks of RT-qPCR. We have shown that these newly developed and validated PepMV-genotype-specific dPCR assays are suitable candidates for higher-order methods for quantification of PepMV RNA, as they show lower measurement variability, with sensitivity and specificity comparable to RT-qPCR.
Ključne besede: digital PCR, pepino mosaic virus, quantification, genotype specific
Objavljeno v DiRROS: 19.07.2024; Ogledov: 141; Prenosov: 56
.pdf Celotno besedilo (1,07 MB)
Gradivo ima več datotek! Več...

25.
Inactivation of pepper mild mottle virus in water by cold atmospheric plasma
Arijana Filipić, David Dobnik, Magda Tušek-Žnidarič, Bojana Žegura, Alja Štern, Gregor Primc, Miran Mozetič, Maja Ravnikar, Jana Žel, Ion Gutiérrez-Aguirre, 2021, izvirni znanstveni članek

Povzetek: Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.
Ključne besede: enteric viruses, pepper mild mottle virus, virus inactivation, water decontamination, cold atmospheric plasma
Objavljeno v DiRROS: 19.07.2024; Ogledov: 122; Prenosov: 103
.pdf Celotno besedilo (1,88 MB)
Gradivo ima več datotek! Več...

26.
Assessment of different experimental setups to determineviral filtration efficiency of face masks
Arijana Filipić, Katja Fric, Maja Ravnikar, Polona Kogovšek, 2022, izvirni znanstveni članek

Povzetek: Abstract As a result of the COVID-19 pandemic, many new materials and masks came onto the market. To determine their suitability, several standards specify which properties to test, including bacterial filtration efficiency (BFE), while none describe how to determine viral filtration efficiency (VFE), a property that is particularly important in times of pandemic. Therefore, we focused our research on evaluating the suitability and efficiency of different systems for determining VFE. Here, we evaluated the VFE of 6 mask types (e.g., a surgical mask, a respirator, material for mask production, and cloth masks) with different filtration efficiencies in four experimental setups and compared the results with BFE results. The study included 17 BFE and 22 VFE experiments with 73 and 81 mask samples tested, respectively. We have shown that the masks tested had high VFE (>99% for surgical masks and respirators, ≥98% for material, and 87–97% for cloth masks) and that all experimental setups provided highly reproducible and reliable VFE results (coefficient of variation < 6%). Therefore, the VFE tests described in this study can be integrated into existing standards for mask testing.
Ključne besede: face masks, virus filtration efficiency, bacterial filtration efficiency, EN 14683:2019+AC:2019, air sampler
Objavljeno v DiRROS: 17.07.2024; Ogledov: 119; Prenosov: 82
.pdf Celotno besedilo (1,17 MB)
Gradivo ima več datotek! Več...

27.
CRISPR/Cas9-mediated fine-tuning of miRNA expression in tetraploid potato
Tjaša Lukan, Florian Veillet, Maja Križnik, Anna Coll Rius, Tjaša Mahkovec Povalej, Karmen Pogačar, Katja Stare, Laura Chauvin, Jean-Eric Chauvin, Kristina Gruden, 2022, izvirni znanstveni članek

Povzetek: MicroRNAs (miRNAs) are small noncoding RNAs, which modulate the abundance and spatiotemporal accumulation of target mRNAs at transcriptional and post-transcriptional levels and through that play important roles in several biological processes in plants. Here we show that in polyploid species, CRISPR/Cas9 system can be used for fine-tuning of miRNA expression, which can have broader range of applications compared to knock-out mutants. We established the complete pipeline for CRISPR-Cas9-mediated modulation of miRNA expression in potato. It consists of (1) design and assembly of dual sgRNA CRISPR/Cas9 constructs, (2) transient transfection of protoplasts following fast and efficient screening by high resolution melting analysis to select functional sgRNAs, and (3) stable transformation of potato explants with functional sgRNAs and selection of regenerated transgenic lines with desired mutations and desired miRNA abundance based on sequencing and RT-qPCR. We show that miRNA-editing using dual sgRNA approach results in different types of mutations among transgenic lines but also in different alleles of the same plant, which are target site-dependent. The most frequent were short deletions, but we also detected 1-nt insertions (T or G), deletions between two sgRNAs and larger deletions. miRNA abundance correlates with the frequency and type of introduced mutations, as more extensive mutations in more alleles result in lower miRNA abundance. Interestingly, some mutated loci can generate alternative miRNAs, now novel targets were however predicted for those. In all transgenic lines with Cas9 expression, we detected mutations, suggesting high efficiency of Cas9-editing. We confirmed the miRNA-editing efficiency of our optimised approach in two different potato genotypes and three different loci.
Ključne besede: CRISPR/Cas9, hypersensitive response (HR)-conferred resistance, immune signaling, live cell imaging, Solanum tuberosum (potato), spatiotemporal analysis, stromules, virus resistance
Objavljeno v DiRROS: 17.07.2024; Ogledov: 138; Prenosov: 140
.pdf Celotno besedilo (2,94 MB)
Gradivo ima več datotek! Več...

28.
Evaluation of methods and processes for robust monitoring of SARS-CoV-2 in wastewater
Olivera Maksimović, Živa Lengar, Zala Kogej Zwitter, Katarina Bačnik, Irena Bajde, Mojca Milavec, Anže Županič, Nataša Mehle, Denis Kutnjak, Maja Ravnikar, Ion Gutiérrez-Aguirre, 2022, izvirni znanstveni članek

Povzetek: The SARS-CoV-2 pandemic has accelerated the development of virus concentration and molecular-based virus detection methods, monitoring systems and overall approach to epidemiology. Early into the pandemic, wastewater-based epidemiology started to be employed as a tool for tracking the virus transmission dynamics in a given area. The complexity of wastewater coupled with a lack of standardized methods led us to evaluate each step of the analysis individually and see which approach gave the most robust results for SARS-CoV-2 monitoring in wastewater. In this article, we present a step-by-step, retrospective view on the method development and implementation for the case of a pilot monitoring performed in Slovenia. We specifically address points regarding the thermal stability of the samples during storage, screening for the appropriate sample concentration and RNA extraction procedures and real-time PCR assay selection. Here, we show that the temperature and duration of the storage of the wastewater sample can have a varying impact on the detection depending on the structural form in which the SARS-CoV-2 target is present. We found that concentration and RNA extraction using Centricon filtration units coupled with Qiagen RNA extraction kit or direct RNA capture and extraction using semi-automated kit from Promega give the most optimal results out of the seven methods tested. Lastly, we confirm the use of N1 and N2 assays developed by the CDC (USA) as the best performing assays among four tested in combination with Fast Virus 1-mastermix. Data show a realistic overall process for method implementation as well as provide valuable information in regards to how different approaches in the analysis compare to one another under the specific conditions present in Slovenia during a pilot monitoring running from the beginning of the pandemic.
Ključne besede: waste water, method evolution, virus detection, SARS-CoV-2
Objavljeno v DiRROS: 17.07.2024; Ogledov: 125; Prenosov: 107
.pdf Celotno besedilo (1,32 MB)
Gradivo ima več datotek! Več...

29.
Systematic comparison of nanopore and illumina sequencing for the detection of plant viruses and viroids using total RNA sequencing approach
Anja Pecman, Ian Adams, Ion Gutiérrez-Aguirre, Adrian Fox, Neil Boonham, Maja Ravnikar, Denis Kutnjak, 2022, izvirni znanstveni članek

Povzetek: High-throughput sequencing (HTS) has become an important tool for plant virus detection and discovery. Nanopore sequencing has been rapidly developing in the recent years and offers new possibilities for fast diagnostic applications of HTS. With this in mind, a study was completed, comparing the most established HTS platform (MiSeq benchtop sequencer—Illumina), with the MinION sequencer (Oxford Nanopore Technologies) for the detection of plant viruses and viroids. Method comparisons were performed on five selected samples, containing two viroids, which were sequenced using nanopore technology for the first time and 11 plant viruses with different genome organizations. For all samples, sequencing libraries for the MiSeq were prepared from ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) and for MinION sequencing, direct RNA sequencing of totRNA was used. Moreover, for one of the samples, which contained five different plant viruses and a viroid, three additional variations of sample preparation for MinION sequencing were also used: direct RNA sequencing of rRNA-depleted totRNA, cDNA-PCR sequencing of totRNA, and cDNA-PCR sequencing of rRNA-depleted totRNA. Whilst direct RNA sequencing of total RNA was the quickest of the tested approaches, it was also the least sensitive: using this approach, we failed to detect only one virus that was present in a sample at an extremely low titer. All other MinION sequencing approaches showed improved performance with outcomes similar to Illumina sequencing, with cDNA-PCR sequencing of rRNA-depleted totRNA showing the best performance amongst tested nanopore MinION sequencing approaches. Moreover, when enough sequencing data were generated, high-quality consensus viral genome sequences could be reconstructed from MinION sequencing data, with high identity to the ones generated from Illumina data. The results of this study implicate that, when an appropriate sample and library preparation are selected, nanopore MinION sequencing could be used for the detection of plant viruses and viroids with similar performance as Illumina sequencing. Taken as a balance of practicality and performance, this suggests that MinION sequencing may be an ideal tool for fast and affordable virus diagnostics.
Ključne besede: high-throughput sequencing, plant virus, viroid detection, comparison, nanopore MinION sequencing, illumina MiSeq sequencing
Objavljeno v DiRROS: 16.07.2024; Ogledov: 149; Prenosov: 128
.pdf Celotno besedilo (2,84 MB)
Gradivo ima več datotek! Več...

30.
Development and validation of a one-step reverse transcription real-time PCR assay for simultaneous detection and identification of tomato mottle mosaic virus and tomato brown rugose fruit virus
Antonio Tiberini, Ariana Manglli, Anna Taglienti, Ana Vučurović, Jakob Brodarič, Luca Ferretti, Marta Luigi, Andrea Gentili, Nataša Mehle, 2022, izvirni znanstveni članek

Povzetek: Tobamovirus species represent a threat to solanaceous crops worldwide, due to their extreme stability and because they are seed borne. In particular, recent outbreaks of tomato brown rugose fruit virus in tomato and pepper crops led to the establishment of prompt control measures, and the need for reliable diagnosis was urged. Another member of the genus, tomato mottle mosaic virus, has recently gained attention due to reports in different continents and its common features with tomato brown rugose fruit virus. In this study, a new real-time RT-PCR detection system was developed for tomato brown rugose fruit virus and tomato mottle mosaic virus on tomato leaves and seeds using TaqMan chemistry. This test was designed to detect tomato mottle mosaic virus by amplifying the movement protein gene in a duplex assay with the tomato brown rugose fruit virus target on the CP-3’NTR region, which was previously validated as a single assay. The performance of this test was evaluated, displaying analytical sensitivity 10−5–10−6-fold dilution for seeds and leaves, respectively, and good analytical specificity, repeatability, and reproducibility. Using the newly developed and validated test, tomato brown rugose fruit virus detection was 100% concordant with previously performed analyses on 106 official samples collected in 2021 from different continents.
Ključne besede: real-time PCR, tomato mottle mosaic virus, tomato brown rugose fruit virus, leaves detection, seeds detections, performance criteria
Objavljeno v DiRROS: 16.07.2024; Ogledov: 135; Prenosov: 153
.pdf Celotno besedilo (1,99 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.32 sek.
Na vrh