Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (proteases) .

1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment
Bernarda Majc, Tilen Sever, Miki Zarić, Barbara Breznik, Boris Turk, Tamara Lah Turnšek, 2020, pregledni znanstveni članek

Povzetek: Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process that is part of normal embryogenesis and wound healing, and also has a ubiquitous role in various types of carcinoma and glioblastoma. EMT is activated and regulated by specific microenvironmental endogenous triggers and a complex network of signalling pathways. These mostly include epigenetic events that affect protein translation-controlling factors and proteases, altogether orchestrated by the switching on and off of oncogenes and tumour-suppressor genes in cancer cells. The hallmark of cancer-linked EMT is that the process is incomplete, as it is opposed by the reverse process of mesenchymal-to-epithelial transition, which results in a hybrid epithelial/mesenchymal phenotype that shows notable cell plasticity. This is a characteristic of cancer stem cells (CSCs), and it is of the utmost importance in their niche microenvironment, where it governs CSC migratory and invasive properties, thereby creating metastatic CSCs. These cells have high resistance to therapeutic treatments, in particular in glioblastoma.
Ključne besede: carcinomas, cancer stem cellsInvasion, proteases, tumour microenvironment
Objavljeno v DiRROS: 06.08.2024; Ogledov: 29; Prenosov: 50
.pdf Celotno besedilo (1,68 MB)
Gradivo ima več datotek! Več...

2.
Mesenchymal stem cells differentially affect the invasion of distinct glioblastoma cell lines
Barbara Breznik, Helena Motaln, Miloš Vittori, Ana Rotter, Tamara Lah Turnšek, 2017, izvirni znanstveni članek

Povzetek: Glioblastoma multiforme are an aggressive form of brain tumors that are characterized by distinct invasion of single glioblastoma cells, which infiltrate the brain parenchyma. This appears to be stimulated by the communication between cancer and stromal cells. Mesenchymal stem cells (MSCs) are part of the glioblastoma microenvironment, and their ‘cross-talk’ with glioblastoma cells is still poorly understood. Here, we examined the effects of bone marrow-derived MSCs on two different established glioblastoma cell lines U87 and U373. We focused on mutual effects of direct MSC/glioblastoma contact on cellular invasion in three-dimensional invasion assays in vitro and in a zebrafish embryo model in vivo. This is the first demonstration of glioblastoma cell-type-specific responses to MSCs in direct glioblastoma co-cultures, where MSCs inhibited the invasion of U87 cells and enhanced the invasion of U373. Inversely, direct cross-talk between MSCs and both of glioblastoma cell lines enhanced MSC motility. MSC-enhanced invasion of U373 cells was assisted by overexpression of proteases cathepsin B, calpain1, uPA/uPAR, MMP-2, -9 and -14, and increased activities of some of these proteases, as determined by the effects of their selective inhibitors on invasion. In contrast, these proteases had no effect on U87 cell invasion under MSC co-culturing. Finally, we identified differentially expressed genes, in U87 and U373 cells that could explain different response of these cell lines to MSCs. In conclusion, we demonstrated that MSC/glioblastoma cross-talk is different in the two glioblastoma cell phenotypes, which contributes to tumor heterogeneity.
Ključne besede: glioblastoma multiforme, proteases, mesenchymal stem cells, tumor heterogeneity, zebrafish model
Objavljeno v DiRROS: 24.07.2024; Ogledov: 114; Prenosov: 83
.pdf Celotno besedilo (15,25 MB)
Gradivo ima več datotek! Več...

3.
Bacterial degradation of ctenophore Mnemiopsis leidyi organic matter
Eduard Fadeev, Jennifer H. Hennenfeind, Chie Amano, Zihao Zhao, Katja Klun, Gerhard J. Herndl, Tinkara Tinta, 2024, izvirni znanstveni članek

Povzetek: Blooms of gelatinous zooplankton, an important source of protein-rich biomass in coastal waters, often collapse rapidly, releasing large amounts of labile detrital organic matter (OM) into the surrounding water. Although these blooms have the potential to cause major perturbations in the marine ecosystem, their effects on the microbial community and hence on the biogeochemical cycles have yet to be elucidated. We conducted microcosm experiments simulating the scenario experienced by coastal bacterial communities after the decay of a ctenophore (Mnemiopsis leidyi) bloom in the northern Adriatic Sea. Within 24 h, a rapid response of bacterial communities to the M. leidyi OM was observed, characterized by elevated bacterial biomass production and respiration rates. However, compared to our previous microcosm study of jellyfish (Aurelia aurita s.l.), M. leidyi OM degradation was characterized by significantly lower bacterial growth efficiency, meaning that the carbon stored in the OM was mostly respired. Combined metagenomic and metaproteomic analysis indicated that the degradation activity was mainly performed by Pseudoalteromonas, producing a large amount of proteolytic extracellular enzymes and exhibiting high metabolic activity. Interestingly, the reconstructed metagenome-assembled genome (MAG) of Pseudoalteromonas phenolica was almost identical (average nucleotide identity >99%) to the MAG previously reconstructed in our A. aurita microcosm study, despite the fundamental genetic and biochemical differences of the two gelatinous zooplankton species. Taken together, our data suggest that blooms of different gelatinous zooplankton are likely triggering a consistent response from natural bacterial communities, with specific bacterial lineages driving the remineralization of the gelatinous OM.
Ključne besede: jellyfish, proteases, bacterioplankton, ocean biogeochemistry
Objavljeno v DiRROS: 16.05.2024; Ogledov: 250; Prenosov: 238
.pdf Celotno besedilo (2,32 MB)
Gradivo ima več datotek! Več...

4.
Designed protease-based signaling networks
Roman Jerala, Tina Fink, 2022, izvirni znanstveni članek

Ključne besede: proteolysis, viral proteases, endogenous proteases, protease-based sensors, synthetic signaling cascades
Objavljeno v DiRROS: 20.05.2022; Ogledov: 882; Prenosov: 584
.pdf Celotno besedilo (854,25 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.12 sek.
Na vrh