Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (eutrophication) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
New tools and recommendations for a better management of harmful algal blooms under the European Marine Strategy Framework Directive
Yolanda Sagarmínaga, Esther Garcés, Janja Francé, Rowena Stern, Marta Revilla, Erika Magaletti, Eileen Bresnan, George Tsirtsis, 2023, pregledni znanstveni članek

Povzetek: Marine harmful algal blooms (HABs), caused by various aquatic microalgae, pose significant risks to ecosystems, some socio-economic activities and human health. Traditionally managed as a public health issue through reactive control measures such as beach closures, seafood trade bans or closure of mollusc production areas, the multifaceted linkages of HABs with environmental and socio-economic factors require more comprehensive ecosystem-based management approach tools to support policies. This study promotes a coordinated understanding and implementation of HAB assessment and management under the Marine Strategy Framework Directive (MSFD), targeting the achievement of Good Environmental Status (GES) in European marine waters. We introduce two novel tools: GES4HABs (GES for HABs) decision tree, and MAMBO (environMental mAtrix for the Management of BlOoms), a decision support matrix. These tools aim to streamline HABs reporting and prioritize resource allocation and management interventions. The GES4HABs decision tree defines a sequence of decision steps to identify HAB management strategies according to their state (evaluated against predefined baselines) and causes (anthropic or natural). MAMBO is proposed to address different HABs and their interaction with human and environmental pressures. The matrix utilizes two axes: natural trophic status and level of human influence, capturing major aspects such as nutrient supply. While acknowledging the limitations of this simplified framework, MAMBO categorizes marine regions into quadrants of varying management viability. Regions with high human influence and eutrophic conditions are identified as most suitable for effective management intervention, whereas regions with minimal or mixed human influence are deemed less amenable to active management. In addition, we explore and describe various indicators, monitoring methods and initiatives that may be relevant to support assessments of HAB status and associated pressures and impacts in the MSFD reporting. Finally, we provide some recommendations to promote the consideration of HABs in ecosystem-based management strategies, intensify efforts for harmonizing and defining best practices of analysis, monitoring and assessment methodologies, and foster international and cross-sectoral coordination to optimize resources, efforts and roles.
Ključne besede: decision support tools, ecosystem-based management, indicators, marine monitoring, eutrophication, marine biotoxins, environmental assessment, pressures and impacts
Objavljeno v DiRROS: 05.08.2024; Ogledov: 83; Prenosov: 111
.pdf Celotno besedilo (1,78 MB)
Gradivo ima več datotek! Več...

2.
Benthic-pelagic coupling of marine primary producers under different natural and human-induced pressures’ regimes
Vasilis Gerakaris, Ioanna Varkitzi, Martina Orlando-Bonaca, Katerina Kikaki, Patricija Mozetič, Polytimi-Ioli Lardi, Konstantinos Tsiamis, Janja Francé, 2022, izvirni znanstveni članek

Povzetek: Marine primary producers are highly sensitive to environmental deterioration caused by natural and human-induced stressors. Following the Water Framework Directive and the Marine Strategy Framework Directive requirements, the importance of using the different primary producers of the coastal marine ecosystem (pelagic: phytoplankton and benthic: macroalgae and angiosperms) as appropriate tools for an integrated assessment of the ecological status of the coastal environment has been recognized. However, the processes by which water column characteristics and phytobenthic indicators are linked have not been systematically studied. Based on a large dataset from three Mediterranean sub-basins (Adriatic, Ionian and Aegean Seas) with different trophic conditions, this study aims to explore the coupled responses of benthic and pelagic primary producers to eutrophication pressures on a large scale, focusing on the structural and functional traits of benthic macroalgal and angiosperm communities, and to investigate the key drivers among the different eutrophication-related pelagic indicators (such as nutrient and Chl-a concentrations, water transparency, etc.) that can force the benthic system indicators to low ecological quality levels. In addition to the effects of high nutrient loading on phytoplankton biomass, our results also show that increased nutrient concentrations in seawater have a similar effect on macroalgal communities. Indeed, increasing nutrient concentrations lead to increased coverage of opportunistic macroalgal species at the expense of canopy-forming species. Most structural traits of Posidonia oceanica (expressed either as individual metrics: shoot density, lower limit depth and lower limit type, or in the context of PREI index) show opposite trends to increasing levels of pressure indicators such as ammonium, nitrate, phosphate, Chl-a and light attenuation. Furthermore, our results highlight the regulating effect of light availability on the ecological status of seagrass meadows (Posidonia oceanica and Cymodocea nodosa). Increasing leaf length values of C. nodosa are closely associated with higher turbidity values linked to higher phytoplankton biomass (expressed as Chl-a). Overall, the coupling of pelagic and benthic primary producers showed consistent patterns across trophic gradients at the subregional scale.
Ključne besede: macroalgae, seagrasses, phytoplankton, eutrophication, Mediterranean Sea
Objavljeno v DiRROS: 17.07.2024; Ogledov: 119; Prenosov: 106
.pdf Celotno besedilo (3,29 MB)
Gradivo ima več datotek! Več...

3.
Mixed signals of environmental change and a trend towards ecological homogenization in ground vegetation across different forest types
Janez Kermavnar, Lado Kutnar, 2024, izvirni znanstveni članek

Povzetek: Forest ground vegetation may serve as an early warning system for monitoring anthropogenic global-change impacts on temperate forests. Climate warming may induce a decline of cool-adapted species to the benefit of more thermophilous plants. Nitrogen deposition has been documented to potentially result in soil eutrophication or acidification, which can increase the proportion of species with higher nutrient requirements and species impoverishment caused by competitive exclusion. Abiotic forest disturbances are changing the light conditions in the forest understorey environment. In this resurvey study, we tested the magnitude and direction of change in alpha (species richness) and beta (within-site dissimilarity) diversity and composition of forest ground vegetation in forests of different types in Slovenia over fifteen years. Using plant-derived characteristics (Ellenberg-type indicator values) and by testing a priori predictions concerning expected effects of environmental drivers, we show that the magnitude and direction of forest ground vegetation diversity and floristic changes varies greatly between forest sites. Divergent responses at different sites resulted in low net change of alpha and beta diversity and a weak overall environmental signal. The largest decrease in species number was observed in lowland oak-hornbeam forests, which were also among the sites with the greatest compositional shifts. Changes in beta diversity did not show any consistent trend, and anticipated floristic convergence was not confirmed when all sites were considered. Thermophilization was mainly detected in montane beech sites and alpine spruce forests whereas eutrophication signal was most significant on nutrient-poor sites. Vegetation responses were strongly dependent on initial site conditions. Shrinkage of ecological gradients (process of ecological homogenization) suggests that sites positioned at the ends of the gradients are losing their original ecological character and are becoming more similar to mid-gradient sites that generally exhibit smaller changes. Our results point to the importance of local stand dynamics and overstorey disturbances in explaining the temporal trends in forest ground vegetation. Ground vegetation in Slovenian forests is changing in directions also dictated by multiple regional and global change drivers.
Ključne besede: vegetation resurvey, thermophilization, eutrophication, forest disturbances, alpha and beta diversity, initial site conditions, ICP-Forests network
Objavljeno v DiRROS: 09.04.2024; Ogledov: 440; Prenosov: 229
.pdf Celotno besedilo (1,33 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.12 sek.
Na vrh