Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (amorphous ▫$ZrO_2$▫) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Recycling of different incineration ashes in the construction sector : perspectives from Slovenia
Vesna Zalar Serjun, 2024, pregledni znanstveni članek

Povzetek: The EU prioritizes transitioning to a circular economy, aiming to boost sustainable resource management through policies promoting recycling and reuse, benefiting both the environment and the economy. Many successful case studies demonstrate using various incineration waste by-products (ashes) as substitutes for natural materials, yielding environmental advantages and showcasing sustainable resource management practices. While extensive literature covers ash characterization and applications, the direct links between the properties of the main components, the amorphous phase, and research findings remain elusive. Analysis predominantly centers on microstructural phase development, influencing mechanical, physical, and chemical properties and guiding research interpretations. Existing standards for ash use primarily address coal-derived fly ash, with SIST EN 13282-2 allowing alternative sources like circulating fluidized bed and paper sludge incineration residues. Yet, beyond this standard, no regulations mandate using different ash types. Nonetheless, the applicability of ashes for the geotechnical composite materials has already been confirmed in the field since numerous geotechnical projects have been carried out in Slovenia. Such composites have been recognized as beneficial practices, and the majority of them also possess legal permission for usage according to the Slovenian Technical Approvals. Given the varying value and complexity of ashes, detailed characterization before use is crucial. Assessing the recycling potential of different ashes requires a precise definition of basic properties such as microstructure, minerals, and chemical composition. Emphasis should be placed on characterizing the hydraulic properties and gaining detailed insights into the amorphous phase, ensuring informed decision-making regarding their recycling processes.
Ključne besede: waste by-products from incineration processes, ashes, recycling, amorphous phase, (latent) hydraulic properties, hydration
Objavljeno v DiRROS: 22.07.2024; Ogledov: 150; Prenosov: 122
.pdf Celotno besedilo (1,47 MB)
Gradivo ima več datotek! Več...

2.
The role of relative humidity on crystallization of calcium carbonate from calcium acetoacetate precursor
Andreja Pondelak, Francesca Rosi, Celeste Maurich, Costanza Miliani, Srečo D. Škapin, Andrijana Sever Škapin, 2019, izvirni znanstveni članek

Povzetek: Calcium acetoacetate, Ca(OAcAc)2, was exposed 7, 30 and 365 days to different values of relative humidity (33%, 48%, 75% and 96%) at 40 °C in order to study its transformation to CaCO3. The resulting Ca(OAcAc)2 decomposition and the time dependence of the phase transformations were monitored and critically evaluated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X-ray powder diffraction. The impact of relative humidity on CaCO3 polymorph formation was thoroughly assessed. In all of the conditions used and for all ageing periods, the formed crystal structure is found to be vaterite. At the lowest relative humidity (33%), the amorphous CaCO3 remains more or less almost untransformed even after one year of exposure. It is proposed that the reason for the stability of amorphous CaCO3 is due to the limited amount of physisorbed water on the surfaces of the particles, which is considered the driving force for its transformation. However, the carbonation process is faster in the case of the highest humidity (96%). The findings are not only important for better solutions in the field of cultural heritage, but also shed new light on the fundamental mechanism of CaCO3 crystallization.
Ključne besede: calcium acetoacetate, relative humidity, carbonation, amorphous carbonate, vaterite, mechanism
Objavljeno v DiRROS: 22.11.2023; Ogledov: 563; Prenosov: 262
.pdf Celotno besedilo (6,55 MB)
Gradivo ima več datotek! Več...

3.
Iskanje izvedeno v 0.38 sek.
Na vrh