Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Vilma Ducman) .

41 - 50 / 58
Na začetekNa prejšnjo stran123456Na naslednjo stranNa konec
41.
Mechanical, microstructural and mineralogical evaluation of alkali-activated waste glass and stone wool
Majda Pavlin, Barbara Horvat, Ana Frankovič, Vilma Ducman, 2021, izvirni znanstveni članek

Povzetek: Mineral waste wool represents a significant part of construction and demolition waste (CDW) not yet being successfully re-utilized. In the present study, waste stone wool (SW) and glass wool (GW) in the form received, without removing the binder, were evaluated for their potential use in alkali activation technology. It was confirmed that both can be used in the preparation of alkali-activated materials (AAMs), whether cured at room temperature or at an elevated temperature in order to speed up the reaction. The results show that it is possible to obtain a compressive strength of over 50 MPa using SW or GW as a precursor. A strength of 53 MPa was obtained in AAM based on GW after curing for 3 days at 40 °C, while a similar compressive strength (58 MPa) was achieved after curing the GW mixture for 56 days at room temperature. In general, the mechanical properties of samples based on GW are better than those based on SW. The evolution of mechanical properties and recognition of influential parameters were determined by various microstructural analyses, including XRD, SEM, MIP, and FTIR. The type of activator (solely NaOH or a combination of NaOH and sodium silicate), and the SiO2/Na2O and liquid to solid (L/S) ratios were found to be the significant parameters. A lower SiO2/Na2O ratio and low L/S ratio significantly improve the mechanical strength of AAMs made from both types of mineral wool.
Ključne besede: alkali activation, waste mineral wool, mechanical strength
Objavljeno v DiRROS: 31.07.2023; Ogledov: 433; Prenosov: 393
.pdf Celotno besedilo (9,79 MB)
Gradivo ima več datotek! Več...

42.
Dataset for the article Methodology for evaluating the CO2 sequestration capacity of waste ashes
Vilma Ducman, Sara Tominc, 2023, zaključena znanstvena zbirka raziskovalnih podatkov

Povzetek: The dataset supports the data in the tables and figures in the article Methodology for evaluating the CO2 sequestration capacity of waste ashes (doi: 10.3390/ma16155284). It contains the original masses of waste ash before and during carbonation treatment, the sequestered CO2 masses after carbonation treatment, mass uptake calculations, calcimetric measurements, calculations of theoretical maximum sequestered CO2 (based on XRF results) and carbonation efficiency (CE), original results of DTA/TG analysis of individual ashes, original results of XRF measurement and data from XRD analyses supported by X-ray diffractograms not published in the article.
Ključne besede: CO2 sequestration, carbonation efficiency, coal ash, wood biomass ash, co-combustion ash, DTA-TG analysis
Objavljeno v DiRROS: 14.07.2023; Ogledov: 884; Prenosov: 369
.xlsx Raziskovalni podatki (245,99 KB)
Gradivo ima več datotek! Več...

43.
Influence of microwaves in the early stage of alkali activation on the mechanical strength of alkali-activated materials
Barbara Horvat, Majda Pavlin, Vilma Ducman, 2023, izvirni znanstveni članek

Povzetek: This study focuses on the influence of microwave irradiation dosimetry on alkali-activated slurry in its early stages. The impact on the chemistry and mineralogy along with the mechanical properties were evaluated by changing the power of microwaves and their duration of exposure. This influenced the dissolution of amorphous content, diffusion, and self-assembly into an aluminosilicate network. The precursors used in this study were metakaolin, a non-waste material commonly used in geopolymerisation technology, and local fly ash and ladle furnace slag as secondary materials. Furthermore, they were chemically and mineralogically analysed, and their mixtures with NaOH and Na-water glass provided the optimal ratio of the amount of elements obtained using the pre-calculation approach. However, the potential extra addition of water was experimentally determined to allow complete wetting of the material and solid workability during moulding. Using Fourier-transform infrared spectroscopy, the influence of water was further investigated in alkali-activated slag and fly ash irradiated with microwaves, which resulted in the highest values of mechanical strength in the dosimetry-mapping part of the analysis. In addition to the time dependence of the expected mechanical strength on the ageing of the alkali- activated material, the synthesised material exhibited a significant dependence on the dose of microwave irra- diation, which was different for every precursor as well as every mixture with different chemistries.
Ključne besede: odpadni material, alkalijska aktivacija, obsevanje z mikrovalovi, mehanska trdnost, waste material, alkali activation, microwave irradiation, mechanical strength
Objavljeno v DiRROS: 12.07.2023; Ogledov: 576; Prenosov: 428
.pdf Celotno besedilo (8,99 MB)
Gradivo ima več datotek! Več...

44.
The effect of crystalline waterproofing a dmixtures on the self-healing and permeability of concrete
Anita Gojević, Vilma Ducman, Ivanka Netinger Grubeša, Ana Baričević, Ivana Banjad Pečur, 2021, izvirni znanstveni članek

Povzetek: This paper investigates the effectiveness of a specific crystalline waterproofing admixture (CWA) in concrete as a function of a water–binder ratio. Four concrete mixes with and without CWA were prepared; two of them with a water–binder ratio of 0.45 and two of them with a water– binder ratio of 0.55. Water permeability and compressive strength were tested on hardened concrete specimens and self-healing of cracks over time was observed. Cement paste and CWA paste were prepared to clarify the results obtained on the concrete specimens. SEM and EDS and XRD and FTIR were performed on the hardened pastes to explain the mechanism of CWA working. The results show that the addition of CWA had no significant effect on the compressive strength of the concrete, but reduced the water penetration depth in the concrete, and the reduction was more effective for mixes with lower water–binder ratio. Regarding the self-healing effect, it can be concluded that the addition of CWA improves the crack healing in concrete, but the efficiency of self-healing is highly dependent on the initial crack width. The mechanisms involved in the reduction of water penetration depth and crack healing in concrete can be explained by different mechanisms; one is creation of the CSH gel from unreacted clinker grains, then formation carbonate, and additional mechanism is gel formation (highly expansive Mg-rich hydro-carbonate) from magnesium based additives. The presence of sodium silicate, which would transform into carbonate/bicarbonate, also cannot be excluded.
Ključne besede: slag, self healing concrete, crystal admixture, microstructural analysis
Objavljeno v DiRROS: 03.07.2023; Ogledov: 434; Prenosov: 316
.pdf Celotno besedilo (4,84 MB)
Gradivo ima več datotek! Več...

45.
The deformation of alkali-activated materials at an early age under different curing conditions
Mark Češnovar, Katja Traven, Vilma Ducman, 2021, izvirni znanstveni članek

Povzetek: The production of alkali-activated materials (AAMs) is known for its environmentally friendly processing method, where several amorphous-rich aluminosilicate material sources combine with an alkali media solution to form solid, ceramic-like materials. In terms of the Si:Al, Na(K):Al, and Na(K):H2O ratios, the theory of AAM formation is quite well developed, but some open questions in the technology process remain, especially with regards to the means of curing, where the generation of defects can be persistent. Knowing that deformation is extremely high in the early ages, this study investigates the effects of temperature and moisture on shrinkage behavior within the first 72 h of AA pastes made from ladle (LS) and electric arc furnace (EAF) slag and activated by sodium silicate (Na2SiO3). The method to determine the deformation of alkali-activated slag-based materials, in terms of both autogenous and drying shrinkage, was based on the modified ASTM C1698-19 standard for the measurement of autogenous shrinkage in cement pastes. Autogenous deformation and strain were measured in four samples, using the standard procedure at room temperature, 40 and 60°C. Furthermore, using an adjusted method, nine samples were characterized for strain and partial surface pressure, while drying at room temperature, 40, or 60°C at a relative humidity of 30 or 90%. The results show that the highest rate of autogenous shrinkage occurred at a temperature of 60°C, followed by drying shrinkage at 60°C and 30% relative humidity, owing to the fact that the rate of evaporation was highest at this moisture content. The study aimed to provide guidance regarding selection of the optimal curing set in order to minimize deformations in slag-based alkali-activated materials. In the present case, curing at a temperature of around 40°C under lower moisture conditions for the first 24 h provided optimal mechanical properties for the slags investigated. The methodology might also be of use for other aluminosilicate sources such as metakaolin, fly ash, and mineral wool–based alkali-activated materials.
Ključne besede: alkali-activated materials, slag, drying, autogenous shrinkage, partial surface pressure, curing deformation
Objavljeno v DiRROS: 03.07.2023; Ogledov: 580; Prenosov: 252
.pdf Celotno besedilo (2,23 MB)
Gradivo ima več datotek! Več...

46.
Characterizing the interfacial zones of fly ash based alkali activated adhesives to various substrates
Wolfgang Wisniewski, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali Activated Materials (AAMs) are important potential substitutes for cement in many materials. The AAMs presented here are based on industrial ground granulated blast furnace slag (GGBFS) and fly ash (FA). They are tested for their suitability as adhesives for joining concrete, ceramic tiles, a wood-based geopolymer (WGP) and a high density geopolymer (HDGP). After mixing multiple batches and performing preliminary tests of the resulting shrinkage, bending-, compressive- and pull-of-strengths to standard ceramic tiles, selected mixtures are tested for their open time and applied to bond intended substrates. The interfacial zones (ITZ) of an AAM containing additional KOH and the most comparable KOH-free AAM to concrete, ceramic tiles, WPG and HDGP are subsequently characterized in detail using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). Both mechanical interlocking and areas of probable chemical bonding are identified.
Ključne besede: adhisive, fly ash, ITZ, pull of test, open ccess
Objavljeno v DiRROS: 21.06.2023; Ogledov: 487; Prenosov: 315
.pdf Celotno besedilo (4,51 MB)
Gradivo ima več datotek! Več...

47.
Environmental and biological impact of fly ash and metakaolin-based alkali-activated foams obtained at 70°C and Fired at 1,000°C
Cristina Leonelli, Janez Turk, Giovanni Dal Poggetto, Michelina Catauro, Katja Traven, Alenka Mauko Pranjić, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali-activated foams (AAFs) are inorganic porous materials that can be obtained at temperatures well below 100° C with the use of inorganic wastes as aluminosilicate precursors. In this case, fly ash derived from a Slovenian power plant has been investigated. Despite the environmental benefits per se, due to saving of energy and virgin materials, when using waste materials, it is of extreme importance to also evaluate the potential leaching of heavy metal cations from the alkali-activated foams. This article presents an environmental study of a porous geopolymer derived from this particular fly ash, with respect to the leachability of potentially hazardous elements, its environmental toxicity as determined by biological testing, and the environmental impact of its production. In particular, attention was focused to investigate whether or not 1,000 °C-fired alkali- activated fly ash and metakaolin-based foams, cured at 70 °C, are environmentally friendlier options compared to unfired ones, and attempts to explain the rationale of the results were done. Eventually, the firing process at 1,000 ° C, apart from improving technical performance, could reinforce heavy metal cation entrapment within the aluminosilicate matrix. Since technical performance was also modified by addition of different types of activators (K-based or Na-based), as well as by partial replacement of fly ash with metakaolin, a life cycle assessment (LCA) analysis was performed to quantify the effect of these additions and processes (curing at 70 ° C and firing at 1,000 °C) in terms of global warming potential. Selected samples were also evaluated in terms of leaching of potentially deleterious elements as well as for the immobilization effect of firing. The leaching test indicated that none of the alkali-activated material is classified as hazardous, not even the as-received fly ash as component of new AAF. All of the alkali-activated foams do meet the requirements for an inertness. The highest impact on bacterial colonies was found in samples that did not undergo firing procedures, i.e., those that were cured at 70 °C, which induced the reduction of bacterial Enterococcus faecalis viability. The second family of bacteria tested, Escherichia coli, appeared more resistant to the alkaline environment (pH = 10–12) generated by the unfired AAMs. Cell viability recorded the lowest value for unfired alkali-activated materials produced from fly ash and K-based activators. Its reticulation is only partial, with the leachate solution appearing to be characterized with the most alkaline pH and with the highest ionic conductivity, i.e., highest number of soluble ions. By LCA, it has been shown that 1) changing K-based activators to Na-based activators increases environmental impact of the alkali-activated foams by 1%–4% in terms of most of the impact categories (taking into account the production stage). However, in terms of impact on abiotic depletion of elements and impact on ozone layer depletion, the increase is relatively more significant (11% and 18%, respectively); 2) replacing some parts of fly ash with metakaolin also results in relatively higher environmental footprint (increase of around 1%–4%, while the impact on abiotic depletion of elements increases by 14%); and finally, 3) firing at 1,000°C contributes significantly to the environmental footprint of alkali- activated foams. In such a case, the footprint increases by around one third, compared to the footprint of alkali-activated foams produced at 70 ° C. A combination of LCA and leaching/toxicity behavior analysis presents relevant combinations, which can provide information about long-term environmental impact of newly developed waste-based materials.
Ključne besede: alkali activated materials, geopolimers, leaching, LCA
Objavljeno v DiRROS: 20.06.2023; Ogledov: 471; Prenosov: 250
.pdf Celotno besedilo (3,42 MB)
Gradivo ima več datotek! Več...

48.
Microstructural characterization of alkali-activated composites of lightweight aggregates (LWAs) embedded in alkali-activated foam (AAF) matrices
Katja Traven, Wolfgang Wisniewski, Mark Češnovar, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali-activated composites of lightweight aggregates (LWAs, with beneficial insulating properties) and alkali-activated foams (AAFs, higher added value products due to their production from waste materials at well below 100 ◦C) allow for the expectation of superior properties if a chemical bonding reaction or mechanical interlocking occurs during production. However, the interfaces between LWAs and an AAF have not been studied in detail so far. Chemical reactions are possible if the LWA contains an amorphous phase which can react with the alkaline activators of the AAF, increase the bonding, and thus, also their mechanical strengths. These, in turn, allow for an improvement of the thermal insulation properties as they enable a further density reduction by incorporating low density aggregates. This work features a first-detailed analyses of the interfaces between the LWAs’ expanded polystyrene, perlite, expanded clay and expanded glass, and the alkali-activated foam matrices produced using industrial slags and fly ash. Some are additionally reinforced by fibers. The goal of these materials is to replace cement by alkali-activated waste as it significantly lowers the environmental impact of the produced building components.
Ključne besede: alkali activated materials/geopolymers, light weight aggregates, SEM
Objavljeno v DiRROS: 20.06.2023; Ogledov: 587; Prenosov: 270
.pdf Celotno besedilo (4,49 MB)
Gradivo ima več datotek! Več...

49.
Preparation of façade panels based on alkali-activated waste mineral wool, their characterization and durability aspects
Majda Pavlin, Barbara Horvat, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Mineral wool is a widely used insulation material and one of the largest components of construction and demolition waste, yet it mainly ends up in landfills. In this work, we explored the potential recycling of waste stone wool in the pilot production of alkali-activated façade panels. The current work shows mechanical properties, SEM-EDS and mercury intrusion porosimetry analyses for three different mix designs used for the preparation of façade panels. They are all composed of waste stone wool and differ in the amount of co-binders (local slag, lime, metakaolin and/or fly ash) selected by the preliminary studies. In this study, co-binders were added to increase early strength and improve the mechanical properties and freeze-thaw resistance. The mechanical properties of each were measured up to 256 days, different durability tests were executed, and, by evaluating the mechanical properties, microstructure and workability of the mortar, the most suitable mix was selected to be used for pilot production. In addition, the leaching test of the selected mixture showed no exceeded toxic trace elements and therefore got classified as non-hazardous waste after its use.
Ključne besede: alkali activation, waste mineral wool, SEM, XRF, XRD, mechanical strength
Objavljeno v DiRROS: 19.06.2023; Ogledov: 515; Prenosov: 242
.pdf Celotno besedilo (1,27 MB)
Gradivo ima več datotek! Več...

50.
The preparation and characterization of low-temperature foams based on the alkali activation of waste stone wool
Majda Pavlin, Barbara Horvat, Mark Češnovar, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Waste mineral wool represents a huge amount of construction and demolition waste that is still not adequately returned into the value chain but needs to be landfilled. In the present study, waste stone wool (SW) was evaluated for the preparation of alkali-activated foams. For this purpose SW was milled and sieved below 63 μm, then the activator (sodium silicate) and different amounts of foaming agent (hydrogen peroxide, H2O2), varying between 1 wt% and 3 wt%, were added to the slurry and cured in moulds at an elevated temperature (70 ◦ C) for three days. In this way, foamed, highly porous materials were obtained whose density and mechanical properties were influenced by the amount of foaming agent used. The densities obtained ranged between 1.4 and 0.5 g/cm3, with corresponding mechanical properties of between 12.6 and 1.5 MPa and total porosities in the range 37.8–78.6%, respectively. In the most porous samples with the total porosity of 78.6%, a thermal conductivity of 0.092 W/(m∙K) was confirmed. The study confirmed the suitability of waste mineral wool (in our case SW) as a precursor for alkali-activated foams with potential use in the construction sector or other industrial applications.
Ključne besede: alkali activation, waste mineral wool, mechanical strength, open access, alkalijska aktivacija, odpadna volna, SEM, XRF, XRD, mehanska trdnost, odprti dostop
Objavljeno v DiRROS: 19.06.2023; Ogledov: 456; Prenosov: 325
.pdf Celotno besedilo (9,47 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.99 sek.
Na vrh