Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Pompe Novak Maruša) .

1 - 7 / 7
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Physiological and transcriptional responses to saline irrigation of young ‘Tempranillo’ vines grafted onto different rootstocks
Ignacio Buesa, Juan G. Pérez-Pérez, Fernando Visconti, Rebeka Strah, Diego S. Intrigliolo, Luis Bonet, Kristina Gruden, Maruša Pompe Novak, Jose M. de Paz, 2022, izvirni znanstveni članek

Povzetek: The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young ‘Tempranillo’ (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m–1 and a Saline treatment with 3.5 dS m–1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl– and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.
Ključne besede: osmotic adjustment, gas exchange, gene expression, water relations, Vitis vinifera L. (grapevine), salinity tolerance
Objavljeno v DiRROS: 17.07.2024; Ogledov: 4; Prenosov: 4
.pdf Celotno besedilo (2,32 MB)
Gradivo ima več datotek! Več...

2.
The physiological impact of GFLV virus infection on grapevine water status : first observations
Anastazija Jež Krebelj, Maja Cigoj, Marija Stele, Marko Chersicola, Maruša Pompe Novak, Paolo Sivilotti, 2022, izvirni znanstveni članek

Povzetek: In a vineyard, grapevines are simultaneously exposed to combinations of several abiotic (drought, extreme temperatures, salinity) and biotic stresses (phytoplasmas, viruses, bacteria). With climate change, the incidences of drought in vine growing regions are increased and the host range of pathogens with increased chances of virulent strain development has expanded. Therefore, we studied the impact of the combination of abiotic (drought) and biotic (Grapevine fanleaf virus (GFLV) infection) stress on physiological and molecular responses on the grapevine of cv. Schioppettino by studying the influence of drought and GFLV infection on plant water status of grapevines, on grapevine xylem vessel occlusion, and on expression patterns of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1), 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), WRKY encoding transcription factor (WRKY54) and RD22-like protein (RD22) genes in grapevines. A complex response of grapevine to the combination of drought and GFLV infection was shown, including priming in the case of grapevine water status, net effect in the case of area of occluded vessels in xylem, and different types of interaction of both stresses in the case of expression of four abscisic acid-related genes. Our results showed that mild (but not severe) water stress can be better sustained by GFLV infection rather than by healthy vines. GFLV proved to improve the resilience of the plants to water stress, which is an important outcome to cope with the challenges of global warming.
Ključne besede: grapevine, water status, virus infection, GFLV, xylem vessel occlusion, gene expression
Objavljeno v DiRROS: 16.07.2024; Ogledov: 25; Prenosov: 8
.pdf Celotno besedilo (4,43 MB)
Gradivo ima več datotek! Več...

3.
Studying cell death initiation using a digital microscope
Tina Arnšek, Nuša Golob, Nastja Marondini, Maruša Pompe Novak, Kristina Gruden, Tjaša Lukan, 2023, izvirni znanstveni članek

Povzetek: Hypersensitive response (HR)-conferred resistance is an effective defense response that can be determined by the N resistance genes. HR is manifested as the formation of cell death zones on inoculated leaves. Here, a protocol for studying the rate of cell death initiation by imaging inoculated leaves in the time between the cell death initiation and the cell death appearance using a digital microscope is presented. The digital microscope enables a continuous imaging process in desired intervals, which allows an accurate determination of cell death initiation rate up to minutes exactly, as opposed to hours in traditional methods. Imaging with the digital microscope is also independent of light and can therefore be used during day and night without disturbing the circadian rhythm of the plant. Different pathosystems resulting in programmed cell death development could be studied using this protocol with minor modifications. Overall, the protocol thus allows simple, accurate, and inexpensive identification of cell death initiation rate.
Ključne besede: digital microscope, cell death, inoculated leaves
Objavljeno v DiRROS: 12.07.2024; Ogledov: 68; Prenosov: 31
.pdf Celotno besedilo (1,13 MB)
Gradivo ima več datotek! Več...

4.
The activation of iron deficiency responses of grapevine rootstocks is dependent to the availability of the nitrogen forms
Sarhan Khalil, Rebeka Strah, Arianna Lodovici, Petr Vojta, Federica De Berardinis, Jörg Ziegler, Maruša Pompe Novak, Laura Zanin, Nicola Tomasi, Astrid Forneck, Michaela Griesser, 2024, izvirni znanstveni članek

Povzetek: Background In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. Results The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3 −/NH4 + (1:0)/- Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3 −/NH4 + (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. Conclusions Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.
Ključne besede: vitis, iron uptake, chlorosis, nitrate, ammonium, RNA-Seq
Objavljeno v DiRROS: 19.06.2024; Ogledov: 117; Prenosov: 50
.pdf Celotno besedilo (9,52 MB)
Gradivo ima več datotek! Več...

5.
Candidate pathogenicity factor/effector proteins of ‘Candidatus Phytoplasma solani’ modulate plant carbohydrate metabolism, accelerate the ascorbate–glutathione cycle, and induce autophagosomes
Marina Dermastia, Špela Tomaž, Rebeka Strah, Tjaša Lukan, Anna Coll Rius, Barbara Dušak, Timotej Čepin, Aleš Kladnik, Maja Zagorščak, Kristina Gruden, Maruša Pompe Novak, 2023, izvirni znanstveni članek

Povzetek: The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ‘Candidiatus Phytoplasma solani’ are unknown. Six putative pathogenicity factors/effectors from six different strains of ‘Ca. P. solani’ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate–glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate–glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.
Ključne besede: autophagosome, effector, glycolysis, pathogenicity factor, StAMP
Objavljeno v DiRROS: 24.08.2023; Ogledov: 643; Prenosov: 289
.pdf Celotno besedilo (7,84 MB)
Gradivo ima več datotek! Več...

6.
7.
Geographical and temporal diversity of ‘Candidatus Phytoplasma solani' in wine-growing regions in Slovenia and Austria
Nataša Mehle, Sanda Kavčič, Sara Mermal, Sara Vidmar, Maruša Pompe Novak, Monika Riedle-Bauer, Günter Brader, Aleš Kladnik, Marina Dermastia, 2022, izvirni znanstveni članek

Povzetek: As the causal agent of the grapevine yellows disease Bois noir, ‘Candidatus Phytoplasma solani’ has a major economic impact on grapevines. To improve the control of Bois noir, it is critical to understand the very complex epidemiological cycles that involve the multiple “Ca. P. solani” host plants and insect vectors, of which Hyalesthes obsoletus is the most important. In the present study, multiple genotyping of the tuf, secY, stamp, and vmp1 genes was performed. This involved archived grapevine samples that were collected during an official survey of grapevine yellows throughout the wine-growing regions of Slovenia (from 2003 to 2016), plus samples from Austrian grapevines, stinging nettle, field bindweed, and insect samples (collected from 2012 to 2019). The data show that the tuf-b2 type of the tuf gene has been present in eastern Slovenia since at least 2003. The hypotheses that the occurrence of the haplotypes varies due to the geographical position of Slovenia on the Italian–Slovenian Karst divide and that the haplotypes are similar between Slovenian and Austrian Styria were confirmed. The data also show haplotype changes for host plants and H. obsoletus associated with ‘Ca. P. solani,’ which might be linked to new epidemiological cycles of this phytoplasma that involve not just new plant sources and new insect vectors, but also climate and land-use changes.
Ključne besede: Bois noir, genotyping, ‘Ca. P. solani’, tuf gene, secY, survey, tuf-b2, stamp
Objavljeno v DiRROS: 10.06.2022; Ogledov: 955; Prenosov: 594
.pdf Celotno besedilo (3,98 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 3.13 sek.
Na vrh