Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Mateja Erdani-Kreft) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Current and innovative approaches in the treatment of non-muscle invasive bladder cancer : the role of transurethral resection of bladder tumor and organoids
Milena Taskovska, Mateja Erdani-Kreft, Tomaž Smrkolj, 2020, pregledni znanstveni članek

Povzetek: Background. Bladder cancer is the 7th most common cancer in men. About 75% of all bladder cancer are nonmuscle invasive (NMIBC). The golden standard for definite diagnosis and first-line treatment of NMIBC is transurethral resection of bladder tumour (TURB). Historically, the monopolar current was used first, today bipolar current is preferred by most urologists. Following TURB, depending on the tumour grade, additional intravesical chemo- or/and immunotherapy is indicated, in order to prevent recurrence and need for surgical resection. Development of new technologies, molecular and cell biology, enabled scientists to develop organoids % systems of human cells that are cultivated in the laboratory and have characteristics of the tissue from which they were harvested. In the field of urologic cancers, the organoids are used mainly for studying the course of different diseases, however, in the field of bladder cancer the data are scarce. Conclusions. Different currents - monopolar and bipolar, have different effect on urothelium, that is important for oncological results and pathohistological interpretation. Specimens of bladder cancer can be used for preparation of organoids that are further used for studying carcinogenesis. Bladder organoids are step towards personalised medicine, especially for testing effectiveness of chemo-/immunotherapeutics.
Ključne besede: bladder cancer, transurethral resection of bladder tumour, monopolar/bipolar current, consensus molecular subtype
Objavljeno v DiRROS: 12.07.2024; Ogledov: 35; Prenosov: 28
.pdf Celotno besedilo (403,12 KB)
Gradivo ima več datotek! Več...

2.
New insights in ATP synthesis as therapeutic target in cancer and angiogenic ocular diseases
Cornelis J. F. van Noorden, Bahar Yetkin-Arik, Paola Serrano Martinez, Noëlle Bakker, Mathilda E. van Breest Smallenburg, Reinier O. Schlingemann, Ingeborg Klaassen, Bernarda Majc, Anamarija Habič, Urban Bogataj, Katrin S. Galun, Miloš Vittori, Mateja Erdani-Kreft, Metka Novak, Barbara Breznik, Vashendriya V. V. Hira, 2024, pregledni znanstveni članek

Povzetek: Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production.
Ključne besede: aerobic glycolysis, anaerobic glycolysis, angiogenesis, ATP synthesis, cancer cells, cancer stem cells, endothelial cells, energy metabolism, eye diseases, oxidative phosphorylation, pericytes, retina, Warburg effect
Objavljeno v DiRROS: 18.06.2024; Ogledov: 127; Prenosov: 77
.pdf Celotno besedilo (3,75 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 1 sek.
Na vrh