Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (LCA) .

11 - 13 / 13
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
11.
Environmental and biological impact of fly ash and metakaolin-based alkali-activated foams obtained at 70°C and Fired at 1,000°C
Cristina Leonelli, Janez Turk, Giovanni Dal Poggetto, Michelina Catauro, Katja Traven, Alenka Mauko Pranjić, Vilma Ducman, 2022, izvirni znanstveni članek

Povzetek: Alkali-activated foams (AAFs) are inorganic porous materials that can be obtained at temperatures well below 100° C with the use of inorganic wastes as aluminosilicate precursors. In this case, fly ash derived from a Slovenian power plant has been investigated. Despite the environmental benefits per se, due to saving of energy and virgin materials, when using waste materials, it is of extreme importance to also evaluate the potential leaching of heavy metal cations from the alkali-activated foams. This article presents an environmental study of a porous geopolymer derived from this particular fly ash, with respect to the leachability of potentially hazardous elements, its environmental toxicity as determined by biological testing, and the environmental impact of its production. In particular, attention was focused to investigate whether or not 1,000 °C-fired alkali- activated fly ash and metakaolin-based foams, cured at 70 °C, are environmentally friendlier options compared to unfired ones, and attempts to explain the rationale of the results were done. Eventually, the firing process at 1,000 ° C, apart from improving technical performance, could reinforce heavy metal cation entrapment within the aluminosilicate matrix. Since technical performance was also modified by addition of different types of activators (K-based or Na-based), as well as by partial replacement of fly ash with metakaolin, a life cycle assessment (LCA) analysis was performed to quantify the effect of these additions and processes (curing at 70 ° C and firing at 1,000 °C) in terms of global warming potential. Selected samples were also evaluated in terms of leaching of potentially deleterious elements as well as for the immobilization effect of firing. The leaching test indicated that none of the alkali-activated material is classified as hazardous, not even the as-received fly ash as component of new AAF. All of the alkali-activated foams do meet the requirements for an inertness. The highest impact on bacterial colonies was found in samples that did not undergo firing procedures, i.e., those that were cured at 70 °C, which induced the reduction of bacterial Enterococcus faecalis viability. The second family of bacteria tested, Escherichia coli, appeared more resistant to the alkaline environment (pH = 10–12) generated by the unfired AAMs. Cell viability recorded the lowest value for unfired alkali-activated materials produced from fly ash and K-based activators. Its reticulation is only partial, with the leachate solution appearing to be characterized with the most alkaline pH and with the highest ionic conductivity, i.e., highest number of soluble ions. By LCA, it has been shown that 1) changing K-based activators to Na-based activators increases environmental impact of the alkali-activated foams by 1%–4% in terms of most of the impact categories (taking into account the production stage). However, in terms of impact on abiotic depletion of elements and impact on ozone layer depletion, the increase is relatively more significant (11% and 18%, respectively); 2) replacing some parts of fly ash with metakaolin also results in relatively higher environmental footprint (increase of around 1%–4%, while the impact on abiotic depletion of elements increases by 14%); and finally, 3) firing at 1,000°C contributes significantly to the environmental footprint of alkali- activated foams. In such a case, the footprint increases by around one third, compared to the footprint of alkali-activated foams produced at 70 ° C. A combination of LCA and leaching/toxicity behavior analysis presents relevant combinations, which can provide information about long-term environmental impact of newly developed waste-based materials.
Ključne besede: alkali activated materials, geopolimers, leaching, LCA
Objavljeno v DiRROS: 20.06.2023; Ogledov: 310; Prenosov: 177
.pdf Celotno besedilo (3,42 MB)
Gradivo ima več datotek! Več...

12.
Mass concrete with EAF steel slag aggregate : workability, strength, temperature rise, and environmental performance
Davor Kvočka, Jakob Šušteršič, Alenka Mauko Pranjić, Ana Mladenovič, 2022, izvirni znanstveni članek

Povzetek: Temperature control is the primary concern during the design and construction process of mass concrete structures. As the concrete production has an enormous negative environmental impact, the development of green mass concretes will eventually become as important as the thermal characteristics. Therefore, this paper investigates the use of Electric Arc Furnace (EAF) steel slag aggregate for the partial replacement of the natural aggregate in the production of mass concrete. The impact of EAF steel aggregate on mass concrete workability, strength, and thermal behaviour was analysed. In addition, a cradle-to-gate LCA study was conducted to evaluate the environmental footprint and sustainability potential of the tested mass concrete mixtures. The study results suggest that the use of EAF steel slag aggregate in combination with a low-heat cement with a high content of blast furnace slag can significantly lower the temperature, reduce the environmental impact, and increase the sustainability potential of mass concrete, while at the same time providing sufficient workability and compressive strength. The study results indicate that EAF steel slag can be upcycled into an aggregate for the production of green mass concrete mixtures.
Ključne besede: mass concrete, thermal stress, EAF steel slag, green concrete, LCA, sustainability, open access
Objavljeno v DiRROS: 31.05.2023; Ogledov: 338; Prenosov: 234
.pdf Celotno besedilo (5,08 MB)
Gradivo ima več datotek! Več...

13.
Drava river sediment in clay brick production : characterization, properties, and environmental performance
Mojca Božič, Lea Žibret, Davor Kvočka, Alenka Mauko Pranjić, Boštjan Gregorc, Vilma Ducman, 2023, izvirni znanstveni članek

Povzetek: The ever-growing worldwide demand for fired clay brick has resulted in the shortage of clay in many parts of the world. Therefore, there is a need to look for more sustainable alternative materials for the brick manufacturing. This study has investigated the potential use of the untreated Drava River sediment as a substitute material for clay in the production of fired bricks, with the research being conducted at both laboratory and industrial level. At the laboratory level, brick specimens were prepared by mixing clay with different river sediment proportions (ranging from 10 to 50 wt%) and were fired at 950 °C, with microstructural and various physical–mechanical properties being analyzed. Elevated carbonate content in Drava river sediment results in higher weight loss during firing at temperatures up to 950 °C, comparing to firing pure brick-making clay. Consequently, the addition of sediment increases porosity of fired bricks, which results in lowering of their mechanical properties. Results reveal that the compressive strength of the pure clay sample was 79.5 MPa, while the compressive strength of the sample with the addition of river sediment from 10 wt% to 50 wt% decreased from 73.9 MPa to 26.2 MPa, respectively. Despite the lower compressive strength, the 26.2 MPa is still above the limit value of 10 MPa specified in the standard EN 772–1 [1]. At the industrial level, hollow clay bricks were prepared with 20 wt% of the river sediment and fired in a tunnel kiln. Inclusion of the river sediment also decreased compressive strength from 38 MPa for pure mixture to 26 MPa for 20 wt% of the sediment addition, confirming usability of Drava sediment in brick production. In addition, LCA study has been conducted to evaluate the environmental impacts associated with the industrial production of classic bricks and bricks with the addition of the river sediment. The obtained results have shown that the bricks made with the addition of the Drava River sediment are sustainable and environmentally friendly and meet all the requirements specified in the relevant regulatory standard.
Ključne besede: sediments, clay masonry units, LCA, properties
Objavljeno v DiRROS: 30.05.2023; Ogledov: 349; Prenosov: 245
.pdf Celotno besedilo (4,76 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.08 sek.
Na vrh