Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

There are two search modes available: simple and advanced. Simple search can include one or more words from the title, summary, keywords or full text, but does not allow the use of search operators. Advanced search allows to limit the number of search results by entering the search terms of different categories in the search window, as well as the use of Boolean search operators (AND, OR and AND NOT). In search results short formats of records are displayed and some data are displayed as links, which open a detailed description of the material (title link) or perform a new search (author or keyword link).

Help
Search in:
Options:
 


1851 - 1860 / 2000
First pagePrevious page182183184185186187188189190191Next pageLast page
1851.
The LANDSUPPORT geospatial decision support system (S-DSS) vision : operational tools to implement sustainability policies in land planning and management
Fabio Terribile, Marco Acutis, Antonella Agrillo, Erlisiana Anzalone, Sayed Azam-Ali, Marialaura Bancheri, Peter Baumann, Barbara Birli, Antonello Bonfante, Marco Botta, Mitja Ferlan, Jernej Jevšenak, Primož Simončič, Mitja Skudnik, 2023, original scientific article

Abstract: Nowadays, there is contrasting evidence between the ongoing continuing and widespread environmental degradation and the many means to implement environmental sustainability actions starting from good policies (e.g. EU New Green Deal, CAP), powerful technologies (e.g. new satellites, drones, IoT sensors), large databases and large stakeholder engagement (e.g. EIP-AGRI, living labs). Here, we argue that to tackle the above contrasting issues dealing with land degradation, it is very much required to develop and use friendly and freely available web-based operational tools to support both the implementation of environmental and agriculture policies and enable to take positive environmental sustainability actions by all stakeholders. Our solution is the S-DSS LANDSUPPORT platform, consisting of a free web-based smart Geospatial CyberInfrastructure containing 15 macro-tools (and more than 100 elementary tools), co-designed with different types of stakeholders and their different needs, dealing with sustainability in agriculture, forestry and spatial planning. LANDSUPPORT condenses many features into one system, the main ones of which were (i) Web-GIS facilities, connection with (ii) satellite data, (iii) Earth Critical Zone data and (iv) climate datasets including climate change and weather forecast data, (v) data cube technology enabling us to read/write when dealing with very large datasets (e.g. daily climatic data obtained in real time for any region in Europe), (vi) a large set of static and dynamic modelling engines (e.g. crop growth, water balance, rural integrity, etc.) allowing uncertainty analysis and what if modelling and (vii) HPC (both CPU and GPU) to run simulation modelling ‘on-the-fly’ in real time. Two case studies (a third case is reported in the Supplementary materials), with their results and stats, covering different regions and spatial extents and using three distinct operational tools all connected to lower land degradation processes (Crop growth, Machine Learning Forest Simulator and GeOC), are featured in this paper to highlight the platform's functioning. Landsupport is used by a large community of stakeholders and will remain operational, open and free long after the project ends. This position is rooted in the evidence showing that we need to leave these tools as open as possible and engage as much as possible with a large community of users to protect soils and land.
Keywords: land degradation, land management, soil, spatial decision support system, sustainability
Published in DiRROS: 13.11.2023; Views: 473; Downloads: 236
.pdf Full text (4,42 MB)
This document has many files! More...

1852.
Defining the fire decay and the cooling phase of post-flashover compartment fires
Andrea Lucherini, Jose L. Torero, 2023, original scientific article

Abstract: The current research study discusses and characterises the fire decay and cooling phase of post-flashover compartment fires, as they are often mixed up despite their important heat transfer differences. The two pha- ses are defined according to the fire heat release rate time-history. The fire decay represents the phase in which the fire heat release rate decreases from the ventilation- or fuel-limited steady-state value of the fully-developed phase to fire extinguishment. This phase is highly influenced by the fuel characteristics, ranging from fast decays for hydrocarbon and liquid fuels to slow decays for charring cellulosic fuels (wood). Once the fuel is consumed, the compartment volume enters the cooling phase, where the cooling in the gas-phase and solid-phase happens with significantly different modes and characteristic times. The thermal boundary conditions at the structural elements are then defined according to physical characteristics and dynamics within the compartment. The research study also underlines how the existing performance-based methodologies lack explicit definitions of the decay and cooling phases and the corresponding thermal boundary conditions for the design of fire-safe struc- tural elements under realistic fire conditions.
Keywords: razpadanje ognja, hlajenje, izgorevanje, naravna izpostavljenost ognju, dinamika požara, požari v oddelkih, požarno inženirstvo, učinkovitost, požarna varnost, fire decay, cooling, burnout, natural fire exposure, fire dynamics, compartment fires, structural fire engineering, performance-based, fire safety
Published in DiRROS: 13.11.2023; Views: 414; Downloads: 195
.pdf Full text (4,91 MB)
This document has many files! More...

1853.
A historical overview of experimental solid combustion research in microgravity
Wilson Ulises Rojas Alva, Grunde Jomaas, 2022, original scientific article

Abstract: Studying solid combustion phenomena in microgravity environments can be complex, and this is furthered by many limitations and constraints in the available microgravity research platforms. Consequently, fire safety in spacecraft is also a complex subject. The main limitations found in the field are related to the microgravity quality, the duration of microgravity conditions, the rig capabilities in volume and size, time scales, length scales and the diagnostic systems, and these are therefore the focus in the current investigation. The laboratory capacity of ground-based platforms has remained somewhat stalled since 1990s, some drop towers have recently been upgraded to extend their performance. New space-based platforms have been or are being established and could extend the windows-of-opportunity to perform research. In addition, a discussion is provided on the implications of the fact that the phenomena studied in the experimental investigations and the type of material employed covers both programmatic and scientific needs. It is found that a handful of materials are most widely studied to quantify and characterise some of the phenomena, while some materials have been employed even in single experimental efforts. The current literature review provides a very comprehensive overview of previous experimental studies and the experimental methodologies utilised. Thus, this study can become an aid to planning for future studies.
Keywords: Microgravity, research platforms, solid combustion, fire safety, spacecraft
Published in DiRROS: 13.11.2023; Views: 405; Downloads: 138
.pdf Full text (965,67 KB)
This document has many files! More...

1854.
Poročilo o preskusu št.: LVG 2023-217 : vzorec št. 2023/00728
Maarten De Groot, 2023, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize, Anoplophora chinensis, kitajski kozliček
Published in DiRROS: 13.11.2023; Views: 369; Downloads: 0

1855.
Flame spread behaviour of Polydimethylsiloxane (PDMS) membranes in 1 g and µg environments
Wilson Ulises Rojas Alva, Frederik Møller-Poulsen, Sze Lok Man, Cameron Creamer, David Hanna, Grunde Jomaas, 2022, original scientific article

Abstract: Diffusion flame behaviour and silica ash (SiO2) production were experimentally studied for various Polydimethylsiloxane (PDMS) membrane thicknesses (0.125 mm to 1.0 mm) in normal gravity and during microgravity flight experiments. The flames were established on vertical samples (300 mm in length) and subjected to either opposed or concurrent forced flows (both laminar and turbulent), assimilating the NASA Test 1 that is in use for spacecraft material selection. The opposed flame spread rate was observed to be steady and could be estimated using classical theory. Under concurrent flow, the flame spread rate was only steady for very high forced flows. The opposed flame-spread rate ranged from 0.5 to 1.5 mm/s, while the concurrent case ranged between 0.1 and 12 mm/s. The transport of silica ash (SiO2) was found to affect the heat balance of the concurrent flame spread in a manner that resulted in unsteady flame spread. For opposed flame spread, on the other hand, the transport of silica ash showed to be irrelevant. The extinction behaviour for the concurrent flame spread was heavily dominated by the transport of silica-ash, while for opposed flames, extinction was due to kinetics (at high forced flows). In microgravity environments, the transport and deposition of silica ash is anticipated to dominate flame spread and near-limit as well. These results suggest that silica-based products might be less flammable in microgravity than other similar materials such as common thermoplastics (PP or PE) used as wire jackets.
Keywords: silicone burning, spacecraft fire safety, flame spread, near-limit, silica-ash
Published in DiRROS: 13.11.2023; Views: 429; Downloads: 148
.pdf Full text (1,61 MB)
This document has many files! More...

1856.
Poročilo o preskusu št.: LVG 2023-216 : vzorec št. 2023/00647/MdG
Maarten De Groot, 2023, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize, Agrilus planipennis, jesenov krasnik
Published in DiRROS: 13.11.2023; Views: 428; Downloads: 0

1857.
Reaction microkinetic model of xylose dehydration to furfural over beta zeolite catalyst
Emilija Rakić, Andrii Kostyniuk, Nikola Nikačević, Blaž Likozar, 2023, original scientific article

Published in DiRROS: 13.11.2023; Views: 513; Downloads: 215
.pdf Full text (1,80 MB)
This document has many files! More...

1858.
1859.
1860.
Search done in 0.61 sec.
Back to top