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In this paper we investigate orders, longest cycles and the 
number of cycles of automorphisms of finite vertex-transitive 
graphs. In particular, we show that the order of every 
automorphism of a connected vertex-transitive graph with n
vertices and of valence d, d ≤ 4, is at most cdn where c3 = 1
and c4 = 9. Whether such a constant cd exists for valencies 
larger than 4 remains an unanswered question. Further, we 
prove that every automorphism g of a finite connected 3-
valent vertex-transitive graph Γ, Γ �∼= K3,3, has a regular 
orbit, that is, an orbit of 〈g〉 of length equal to the order of 
g. Moreover, we prove that in this case either Γ belongs to a 
well understood family of exceptional graphs or at least 5/12
of the vertices of Γ belong to a regular orbit of g. Finally, we 
give an upper bound on the number of orbits of a cyclic group 
of automorphisms C of a connected 3-valent vertex-transitive 
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graph Γ in terms of the number of vertices of Γ and the length 
of a longest orbit of C.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

For a permutation g of a finite non-empty set Ω, let

o(g) = the order of g;

�(g) = the length of the longest orbit of 〈g〉;
μ(g) = the number of orbits of 〈g〉.

Equivalently, if the permutation g is written as a product of disjoint cycles, then μ(g)
equals the number of cycles (including those of length 1), �(g) represents the length of 
the longest of these cycles, while o(g) equals the least common multiple of the lengths 
of all the cycles of g.

Further, for a permutation group G ≤ Sym(Ω) we let

meo(G) = max
g∈G

o(g), �(G) = max
g∈G

�(g), μ(G) = min
g∈G

μ(g), meo◦(G) = max
ω∈Ω

meo(Gω),

where Gω denotes the stabiliser of ω ∈ Ω in G. These parameters are of course not 
mutually independent (see Lemma 2.1 and Lemma 2.4, for example).

Studying maximal orders of permutations and the longest orbits of cyclic groups have 
received considerable attention in the theory of finite groups, especially in the context of 
primitive permutation groups [16–18]. In this paper we propose the investigation of the 
above parameters in a graph theoretical setting. In particular, for a finite graph Γ with 
the automorphism group Aut(Γ), we are interested in the following invariants:

meo(Γ) = meo(Aut(Γ)) . . . maximal order of an automorphism;
�(Γ) = �(Aut(Γ)) . . . maximal length of an orbit of an automorphism;
μ(Γ) = μ(Aut(Γ)) . . . minimal number of orbits of a non-trivial

automorphism;
meo◦(Γ) = meo◦(Aut(Γ)) . . . maximal order of an automorphism fixing

a vertex.

There is a number of interesting problems related to these parameters, especially in 
the context of connected vertex-transitive graphs. Let us mention a few.

The first question is related to the existence and possible classification of graphs 
admitting an automorphism with a large order, that is, graphs Γ with a large value of 
meo(Γ).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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A classical result of Landau [23] states that meo(Sym(n)) = e(1+o(1))(n logn)1/2 giving 
a sub-exponential upper bound on meo(Γ) in terms of the size of the vertex-set V(Γ)
of Γ, which is met by the complete graphs and their complements. A more interesting 
question to ask is whether a better, possibly linear bound holds for connected graphs of 
fixed valence.

Question 1.1. For which positive integers d does there exist a constant cd such that every 
connected d-valent vertex-transitive graph Γ with n vertices satisfies meo(Γ) ≤ cdn?

In this paper, we answer this question for valencies 3 and 4. In particular, we prove 
the following:

Theorem 1.2. Let Γ be a finite connected vertex-transitive graph of valence d ∈ {3, 4}
and let n be the number of vertices of Γ. If d = 3, then meo(Γ) ≤ n, and if d = 4, then 
meo(Γ) ≤ 9n.

While the constant c3 = 1 is sharp, as witnessed by cubic circulants, we have no 
examples of vertex-transitive graphs Γ of valence 4 admitting an automorphism of order 
9n. The smallest possible value of the constant c4 might thus be as small as 1 (perhaps 
allowing a finite number of exceptional graphs).

Furthermore, a variant of the Thompson-Wielandt theorem [44, Corollary 3] together 
with an easy arithmetic argument allowed us to deduce the following fact about arc-
transitive locally semiprimitive graphs (recall that Γ is said to be G-arc-transitive if 
G ≤ Aut(Γ) acts transitively on the set of ordered pairs of adjacent vertices, called arcs; 
for the definition of local semiprimitive, see Section 6).

Theorem 1.3. For every positive integer d there exists a constant cd such that every con-
nected d-valent G-arc-transitive G-locally-semiprimitive graph Γ with n vertices satisfies 
meo(G) ≤ cdn.

While mere existence of the constant cd as in Question 1.1 often suffices for theoretical 
applications, finding as small a constant cd as possible is very desirable for practical 
applications, such as compiling exhaustive lists of graphs of a given symmetry type (see, 
for example, [3,30]).

What is more, it is often helpful to investigate structural properties inferred by ex-
istence of an automorphism of a large order. The following result, which was recently 
used together with [31,32] to prove a classification [33] of cubic vertex-transitive graphs 
Γ with meo(Γ) ≥ |V(Γ)|/3, gives an explicit upper bound on the number of orbits that 
an automorphism of relatively large order has. (The term cubic graph is used throughout 
the paper to refer to a finite connected graph every vertex of which has valence 3.)

Theorem 1.4. Let Γ be a cubic vertex-transitive graph with n vertices and let g ∈ Aut(Γ). 
Then μ(g) ≤ 17n . In particular, μ(Γ) ≤ 17n .
6 o(g) 6 meo(Γ)
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Since clearly meo(G) ≤ meo◦(G)n ≤ |Gω|n holds for every transitive permutation 
group G acting on a set of size n, one way of bounding the parameter meo(Γ) by a 
linear function of |V(Γ)| is to bound the parameter meo◦(Γ) (or even the order of a 
vertex-stabiliser Aut(Γ)v) by a constant. Bounding the order of Aut(Γ)v is a classical 
topic in algebraic graph theory, going back to the work of Tutte [49] where he proved 
that |Gv| ≤ 48 for every cubic G-arc-transitive graph. This result does not generalise 
to higher non-prime valencies. However, a long-standing conjecture of Richard Weiss 
[51] states that for every fixed valence d there exists a constant cd such that every 
connected G-arc-transitive G-locally-primitive graph of valence d satisfies |Gv| ≤ cd, and 
thus meo(G) ≤ cdn. This observation puts Theorem 1.3 into the context of the Weiss 
Conjecture (and its recent generalisation [29] to locally-semiprimitive graphs).

On the other hand, it is well known that connected vertex-transitive graphs can have 
an arbitrarily large vertex-stabiliser while still having the order of an element in a vertex-
stabiliser bounded by a constant (consider, for example, the family of lexicographic 
products Cn[2K1] of a cycle Cn with the edgeless graph on two vertices, where the order 
of the vertex-stabiliser grows exponentially with n but the automorphisms fixing a vertex 
have order at most 4). However, there are no known infinite families of connected vertex-
transitive graphs {Γn : n ∈ N} of fixed valence d such that meo◦(Γn) → ∞ as n → ∞. 
This prompted Pablo Spiga to ask whether for every valence d there exists a constant 
cd such that every connected d-valent vertex-transitive graph Γ satisfies meo◦(Γ) ≤ cd. 
Observe that a positive answer to this question would also resolve Question 1.1. Here 
we consider this question in the case of valence 3 and prove the following result (see 
Section 3 for the proof).

Theorem 1.5. If Γ is a connected 3-valent vertex-transitive graph, then meo◦(Γ) ≤ 6.

Let us now discuss the relationship between the parameters �(Γ) and meo(Γ). Note 
that �(g) divides o(g) for every permutation g. When the equality �(g) = o(g) holds, 
we call an orbit of length �(g) a regular orbit of 〈g〉 (or, to simplify terminology, a 
regular orbit of g). The question which permutation groups have the property that all 
of their elements possess a regular orbit has received considerable attention (see, for 
instance, [13,41,42]), especially in the context of primitive permutation groups. This 
work culminated in [18], where it was proved that a primitive group that does not have 
this property must preserve a product structure. Since a transitive permutation group 
G ≤ Sym(Ω) is primitive if and only if every graph Γ with at least one edge such that 
V(Γ) = Ω and G ≤ Aut(Γ) is connected, it is natural to ask to what extent do results 
about regular orbits in primitive permutation groups extend to automorphism groups of 
connected vertex-transitive graphs. In this paper, we consider this question in the setting 
of cubic graphs.

Theorem 1.6. If Γ is a cubic vertex-transitive graph not isomorphic to the complete bipar-
tite graph K3,3, then every automorphism of Γ has a regular orbit and thus o(Γ) = �(Γ). 
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If in addition Γ is not isomorphic to the complete graph K4, the cube graph Q3, the Pe-
tersen graph, the Möbius-Kantor graph, the Pappus graph or the Heawood graph, then for 
every g ∈ Aut(Γ), either 〈g〉 is transitive on V(Γ) or every regular orbit of g is adjacent 
to another regular orbit of g.

Next, we prove that excluding K3,3 and an exceptional family of Split Praeger-Xu 
graphs, regular orbits of any automorphism cover a large part of every cubic vertex-
transitive graph.

Theorem 1.7. Let Γ be a cubic vertex-transitive graph of order n and let g ∈ Aut(Γ). If 
Γ is not isomorphic to K3,3 or a Split Praeger-Xu graph (defined in Section 5), then at 
least 5

12n vertices of Γ lie on a regular orbit of g.

The above results all deal with the situation where a graph admits an automorphism 
of relatively large order. It is, however, a very interesting question what can be said 
about vertex-transitive graphs the automorphisms of which all have small order. To be 
more precise, consider the function

Md(n) = min{meo(Γ) : Γ is a connected d-valent vertex-transitive graph on at least

n vertices}.

As we show in Section 8, the function Md(n) is unbounded for every fixed valence d ≥ 3; 
or in other words, for every constant c there are only finitely many finite connected 
d-valent vertex-transitive graphs Γ with meo(Γ) ≤ c. On the other hand, the function 
Md(n) grows extremely slowly; indeed slower than composition of any finite number of 
logarithms. To quantify this statement, let

na = aa
⋰
a︸︷︷︸

n

for every positive integers n and a, and let

sloga(n) = max{i ∈ N : ia ≤ n}.

The functions n 	→ na and n 	→ sloga(n) are sometimes called the tetration [15] and the 
superlogarithm [54]. They are clearly inverse to each other in the sense that sloga(ia) = i, 
or more generally,

sloga(n) = i if and only if ia ≤ n < i+1a.

We can now state the following theorem about the asymptotic behaviour of the function 
Md(n).
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Theorem 1.8. Let d be an integer greater or equal to 3. Then

lim
n→∞

Md(n) = ∞,

however, there exists a constant kd such that

Md(n) ≤ kd 2slog2(n)

holds for every positive integer n.

We also like to draw the readers attention to an interesting connection between 
Theorem 1.8 and the restricted Burnside problem. Observe first that since every finite 
connected d-valent vertex-transitive graph admits a vertex-transitive subgroup that can 
be generated by d elements (see Lemma 8.1), the fact that Md(n) is unbounded follows 
directly from the solution of the restricted Burnside problem. On the other hand, the 
crucial step in the proof of the slow growth of the function Md(n) consists of a con-
struction of an infinite family of d-generated finite groups Gi, i ∈ N, of exponent 2i and 
order larger than i2, yielding a non-trivial lower bound on the order of the universal 
finite d-generated group R(d, 2i) of exponent 2i. The ideas in our proof of Theorem 1.8
draw heavily from a beautiful paper of Spiga [45], where the solution of the restricted 
Burnside problem was first applied in the context of vertex-transitive graphs, and the 
paper of Vaughan-Lee and Zel’manov [50] where bounds on the order of the universal 
groups R(d, m) were considered.

We would also like to draw the reader’s attention to a very recent result [1] related to 
Theorem 1.8, which roughly speaking states that, if we restrict the problem to semireg-
ular automorphisms, then the minimum among all cubic vertex-transitive graphs of the 
maximum order of a semiregular automorphism is 6.

After proving some auxiliary results in Section 2, we then prove Theorem 1.5 and 
Theorem 1.8 in Section 3, Theorem 1.6 and Theorem 1.2 for the case of cubic graphs in 
Section 4, Theorem 1.4 and Theorem 1.7 in Section 5, and Theorem 1.2 for the case of 
quartic graphs in Section 7. The asymptotic behaviour of the function Md(n) is discussed 
in Section 8, where the proof of Theorem 1.8 is given.

2. Auxiliary results

In this section we prove a few easy auxiliary results about the parameters introduced 
in Section 1. We begin with the following observation.

Lemma 2.1. Let G be a transitive permutation group on a set Ω, let g ∈ G, let s(g) be 
the length of a shortest orbit of the cyclic group 〈g〉 and let s(G) = max{s(g) : g ∈ G}. 
Then:
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�(g) ≤ o(g) ≤ s(g)meo◦(G) ≤ �(g)meo◦(G); (2.1)

�(G) ≤ meo(G) ≤ s(G)meo◦(G) ≤ �(G)meo◦(G), (2.2)

where Gω is the stabiliser of an arbitrary element ω ∈ Ω.

Proof. Let ω ∈ Ω, let C = 〈g〉, let t = |ωC | and let m = meo◦(G); since G is transitive 
on Ω, the parameter m equals meo(Gω) for every ω ∈ Ω. Since s(g) ≤ �(g) ≤ o(g) holds, 
in order to prove (2.1), it suffices to show that o(g) ≤ s(g)m. To do this, observe that 
Cω = 〈gt〉, implying that |Cω| = o(gt) ≤ meo(Gω) = m. By the orbit-stabiliser lemma 
applied to the action of C on Ω we may thus conclude that

o(g) = |C| = |Cω| |ωC | ≤ m|ωC |.

If ω was chosen to be in a shortest orbit of C, then |ωC | = s(g) and thus o(g) ≤ ms(g), 
as required. Part (2.2) now follows easily from (2.1) if we maximise the expressions over 
all g ∈ G, starting with the rightmost expression in the chain of inequalities of (2.1) and 
then proceeding towards the left-hand side. �

The following lemma and its corollary give us an elementary but useful tool that can 
be used to bound the order of a permutation by a linear function of the degree of the 
permutation group. Corollary 2.3 is then used in Section 6 to prove Theorem 1.3

Lemma 2.2. If g is a permutation on a set Ω and C = 〈g〉, then

o(g)
�(g) = min{|Cω| : ω ∈ Ω}

gcd{|Cω| : ω ∈ Ω} .

Proof. Recall that o(g) = lcm{|ωC | : ω ∈ Ω} and that |ωC | = |C|/|Cω|, implying that

o(g) = lcm{ |C|
|Cω|

: ω ∈ Ω} = |C|
gcd{|Cω| : ω ∈ Ω} .

Similarly, �(g) = max{|ωC | : ω ∈ Ω} and thus

�(g) = |C|
min{|Cω| : ω ∈ Ω} ,

as claimed. �
Recall that the exponent exp(G) of a group G is the minimum positive integer e such 

that ge = 1 for every g ∈ G. Clearly exp(G) equals the least common multiple of the 
orders of cyclic subgroup of G.
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Corollary 2.3. Let G be a transitive permutation group on a set Ω, let ω ∈ Ω, let p be a 
prime and let k be an integer coprime to p such that exp(Gω) = kpα for some α ≥ 1. 
Then

o(g) ≤ k�(g)

for every g ∈ G. In particular, if Gω is a p-group, then every element of G has a regular 
orbit.

Proof. Let ω ∈ Ω. Since Cω is a cyclic subgroup of Gω, we see that |Cω| divides exp(Gω)
and thus |Cω| = tpβ for some t ≤ k, gcd(t, p) = 1, and β ≤ α. Now let {ω1, . . . , ωm} be 
a complete set of representatives of the orbits of C on Ω indexed in such a way that

|Cω1 | ≤ |Cω2 | ≤ . . . ≤ |Cωm
|.

Write |Cωi
| = tip

αi with gcd(ti, p) = 1. As observed above, it follows that ti ≤ k. Let 
j ∈ {1, . . . , m} be such that αj = min{αi : i ∈ {1, . . . , m}}. Then

gcd{|Cω| : ω ∈ Ω} = gcd{tipαi : i ∈ {1, . . . ,m}} ≥ pαj .

On the other hand, min{|Cω| : ω ∈ Ω} = t1p
α1 ≤ tjp

αj ≤ kpαj . The result then follows 
by Lemma 2.2. �

The final lemma of the section provides an upper bound on the number of orbits of 
a cyclic subgroup of a transitive permutation group G, depending on the length of its 
longest orbit and the parameter meo◦(G).

Lemma 2.4. If G is a transitive permutation group on a set Ω of cardinality n and g ∈ G, 
then

μ(g) ≤
(

n

�(g) − 1
)

meo◦(G) + 1 and μ(G) ≤
(

n

�(G) − 1
)

meo◦(G) + 1. (2.3)

Proof. As in Lemma 2.1, let s(g) denote the shortest orbits of the group 〈g〉 and let 
s(g) = n1 ≤ n2 ≤ . . . ≤ nm = �(g) be the lengths of the orbits of 〈g〉, counted with 
multiplicity. Then μ(g) = m and

s(g) + n2 + . . . + nm−1 + �(g) = n,

implying that (m − 1)s(g) ≤ s(g) + n2 + . . . + nm−1 = n − �(g). By Lemma 2.1, s(g) ≥
�(g)/meo◦(G) and thus

m ≤ n− �(g) + 1 ≤ n− �(g)meo◦(G) + 1,

s(g) �(g)
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proving the first inequality in (2.3). The second inequality now follows if we choose g to 
be an element of G with the smallest number of orbits. �
3. Vertex-stabilisers of cubic vertex-transitive graphs and proof of Theorem 1.5

In this section we prove Theorem 1.5, which states that meo◦(Γ) ≤ 6 for every cubic 
vertex-transitive graph. As a side result, we also prove the following lemma of indepen-
dent interest.

Lemma 3.1. Let Γ be a cubic graph and let G be a vertex-transitive group of automor-
phisms of Γ. Then G can be generated by 3 elements.

Our proof of Theorem 1.5 and Lemma 3.1 is based on the work of Djoković and Miller 
[7] on cubic arc-transitive graphs, a result of Djoković on 4-valent arc-transitive graphs 
[6], and the splitting and merging operation, introduced in [30], which links the cubic 
vertex- but not arc-transitive graphs with a class of 4-valent arc-transitive graphs.

For the rest of this section, let Γ be a cubic vertex-transitive graph, let G be a vertex-
transitive subgroup of Aut(Γ) and let v be a vertex of Γ. To prove Theorem 1.5, we need 
to prove that o(g) ≤ 6 for every g ∈ Gv, and to prove Lemma 3.1, we need to show that 
G can be generated by three elements.

Suppose first that Γ is isomorphic to a prism (that is, the Cartesian product Cm�K2
of a cycle Cm, m ≥ 3, with the complete graph K2) or to a Möbius ladder (that is, the 
circulant graph Cay(Z2m; {±1, m}) with m ≥ 2). If Γ ∼= Cay(Z2m; {±1, m}), then either 
m = 2 and Γ ∼= K4, or m = 3 and Γ ∼= K3,3, or m ≥ 4 and Aut(Γ) is the dihedral 
group D2m of order 4m with the vertex-stabiliser of order 2. Clearly in all of these cases, 
o(g) ≤ 6 and G can be generated by at most three elements. On the other hand, if 
Γ ∼= Cm�K2, then either m = 4 and Γ is the cube Q3 or m �= 3 and Aut(Γ) ∼= Dm × C2
with the vertex-stabiliser having order 2. Again, in all cases, o(g) ≤ 6 and G can be 
generated by at most three elements. We will thus assume for the rest of this section 
that Γ is neither a prism nor a Möbius ladder.

Suppose that G has m orbits in its action on the arcs of Γ. Then, since Γ is vertex-
transitive, we have m ∈ {1, 2, 3}.

If m = 3, then the connectivity of Γ implies that the stabilizer Gv in G of any 
vertex v ∈ V(Γ) is trivial. Moreover, Γ is a Cayley graph on the group G and thus G is 
generated by the three elements mapping a fixed vertex v to the three neighbours of v. 
Hence o(g) = 1 and G can be generated by three elements, as claimed.

If m = 1, then Γ is arc-transitive. By a result of Djoković and Miller [7] (which is based 
on the celebrated work of Tutte [49] on cubic arc-transitive graphs), Gv is isomorphic 
to either Z3, S3, S3 × S2, S4 or S4 × S2. In none of the five possible cases, an element 
of Gv has order greater than 6. Moreover, as was showed [7], the arc-transitive group G
can be generated by three carefully selected elements (see also [4]).

We are thus left with the case where m = 2. Then Gv must fix an edge x incident to 
v. Let T be the orbit of x under the action of G and observe that T is a perfect matching 
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Fig. 3.1. The neighbourhood of an edge with endpoints v and w in Γ, and the neighbourhood of the corre-
sponding vertex in Λ.

in Γ. Moreover, G is transitive on both A(Γ) \ T ∗ and T ∗, where T ∗ denotes the arcs of 
Γ underlying edges in T .

We can thus construct a connected graph Λ as follows. Let T be the vertex-set of Λ
and let uv ∈ T be adjacent to ab ∈ T \ {uv} in Λ if and only if there exist an edge 
xy ∈ E(Γ) such that x ∈ {u, v} and y ∈ {a, b}. Informally, Λ is constructed from Γ by 
contracting every edge in T (see [30, Construction 7 in Section 4] for details about this 
construction and the graph Λ). Since Γ is neither a prism nor a Möbius ladder, then 
by [30, Lemma 9], Λ is a simple tetravalent graph. Clearly every automorphism in G
induces an automorphism of Λ. Since G is transitive on A(Γ) \ T ∗, we see that G acts 
arc-transitively on Λ.

Let e ∈ T have endpoints v and w and assume the notation in Fig. 3.1. Then N :=
{a, b, c, d} is the set of neighbours of e in Λ. Since G acts transitively on the arcs of Λ, 
it follows that the permutation group GN

e induced by the action of Ge on the set N is 
transitive. Observe also that {{a, b}, {c, d}} is a Ge-invariant partition of N and that Gv

is isomorphic to the subgroup of Ge that fixes {a, b} and {c, d} set-wise. Hence, GN
e is 

permutation isomorphic to one of the three imprimitive transitive groups of degree four: 
D4, Z4 or Z2

2.
If GN

e
∼= Z4 or Z2

2, then it follows from the connectivity of Λ that Ge
∼= Z4 or Ge

∼= Z2
2, 

respectively, and thus o(g) ≤ 4. Moreover, G is generated by the vertex-stabiliser Ge and 
any automorphism mapping e to a neighbour of e in Λ, and therefore G is generated by 
at most 3 elements, as claimed.

Suppose now that GN
e

∼= D4. Then, (Ge, G(e,a), G{e,a}) (where (e, a) denotes the arc 
in Λ and {e, a} denotes the underlying undirected edge) is a dihedral amalgam of type 
(4, 2) (see [6]). It follows from the main theorem of [6] that the subgroup H of Ge that 
fixes both {a, b} and {c, d} set-wise satisfies the following:

H = 〈a0, a1, a2, . . . , an−1〉,
a2
i = 1, 0 ≤ i ≤ n− 1,

[ai, aj ] = ri,j 0 ≤ i, j ≤ n− 1,

where each ri,j has order 2 and lies in the center Z(H) of H. In particular N/Z(H) is 
an elementary abelian 2-group, implying that g2 ∈ Z(H) for every g ∈ H. However since 
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N is generated by involutions, the exponent of Z(H) is at most 2, implying that the 
exponent of N is at most 4. Then, since Gv

∼= H, we see that Gv has exponent at most 
4. Moreover, it follows from the main theorem of [6] that G = 〈x, y, H〉 where x, y are 
two elements of G such that the set of conjugates az0 with z ∈ 〈x, y〉 contains all the 
generators ai, i ∈ {0, . . . , n − 1}, of H. In particular, G = 〈x, y, a0〉.

We have shown that in all possible cases, the order of an element g ∈ Gv is at most 6
and that G is generated by at most 3 elements, thus concluding the proofs of Theorem 1.5
and of Lemma 3.1.

4. Regular orbits of cubic vertex-transitive graphs and proof of Theorem 1.6

For a graph Γ and a group G ≤ Aut(Γ), we let Γ/G be the graph whose vertices are 
the G-orbits of vertices in Γ and two such G-orbits X and Y are adjacent if there is 
a vertex in X adjacent to a vertex in Y . Recall that a vertex-orbit of the cyclic group 
〈g〉, g ∈ Aut(Γ), is called regular provided that its length equals the order of g; in other 
words, if its length is divisible by the length of every other orbit of 〈g〉. We will show that 
with a few exceptions, every automorphism of a cubic vertex-transitive graph admits a 
regular orbit (Theorem 4.7), and if the cyclic group generated by such an automorphism 
is non-transitive, then every regular orbit is adjacent to another regular orbit. These 
two results combined give us Theorem 1.6. We would like to point out that Theorem 4.7
follows at once from Corollary 2.3 if we restrict it to cubic graphs that are vertex- but 
not arc-transitive (as in this case the stabiliser of any vertex is a 2-group). However, the 
arc-transitive case requires a little bit more work. We will need to prove a series of rather 
simple, but useful lemmas, about the relative sizes of adjacent orbits.

In what follows, we let K4 denote the complete graph on 4 vertices, K3,3 the complete 
bipartite graph with 3 vertices in each part, and let Q3 denote the tridimensional cube 
graph. For integers n and k, the generalised Petersen graph GP(n, k) is the graph with 
vertex set {xi, yi | i ∈ Zn} and with edges of the form xixi+1, xiyi and yiyi+k. The 
well-known Pappus graph and Heawood graph are depicted in Fig. 4.1. The following 
three lemmas are useful special cases of [35, Theorem 5].

Lemma 4.1. If Γ is a cubic arc-transitive graph of girth smaller than 6, then Γ is iso-
morphic to one of the following: K4, K3,3, Q3, the Petersen graph GP(5, 2) or the 
dodecahedron GP(10, 2).

Lemma 4.2. Let Γ be a cubic vertex-transitive graph of girth 4. If there is a vertex u such 
that all three edges incident to u lie on two distinct 4-cycles, then Γ is isomorphic to 
K3,3 or Q3.

Lemma 4.3. Let Γ be a cubic vertex-transitive graph of girth 3. If any of the following 
conditions hold, then Γ ∼= K4:
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Fig. 4.1. The Pappus graph (left) and the Heawood graph (right). For each graph, vertices of the same colour 
belong to the same orbit under the action of the automorphism ϕ that acts by adding 1 to the sub-index 
of each vertex.

(1) there is a vertex u such that all three edges incident to u lie on a 3-cycle;
(2) there is an edge e that lies on two distinct 3-cycles.

Lemma 4.4. Let Γ be a cubic vertex-transitive graph, let g ∈ Aut(Γ) and let G = 〈g〉. Let 
u and v be two adjacent vertices belonging to distinct G-orbits. If i|uG| = 3|vG| for some 
i ∈ {1, 2}, then Γ is arc-transitive. In particular, if i = 2 then Γ ∼= K3,3.

Proof. Let n ∈ Z be such that 3n = |uG| and i · n = |vG|. Observe that v = vg
2n = vg

4n

but that u, ug2n and ug4n are all distinct. Moreover, since u ∼ v, we have ug2n ∼ vg
2n and 

ug4n ∼ vg
4n . Then v is adjacent to u, ug2n and ug4n and since ug4n = ug3ngn = ugn , we see 

that Γ(v) = {u, ugn

, ug2n}. The group 〈g2n〉 then fixes v while permuting its neighbours. 
It follows that all three edges incident to v belong to the same 〈g2n〉-orbit. Then, since 
Γ is vertex-transitive, it must also be edge-transitive. Moreover, a cubic graph that is 
both vertex- and edge-transitive must necessarily be arc-transitive.

Now, suppose i = 2. Then |vG| = 2n and thus v �= vg
n . We have shown that Γ(v) =

{u, ugn

, ug2n}, and thus Γ(vgn) = {ugn

, ug2n
, ug3n} = {u, ugn

, ug2n}. Then every vertex 
in {v, vgn} is adjacent to every vertex in {u, ugn

, ug2n}. That is, Γ contains a copy of 
K2,3 and by Lemma 4.1, Γ is isomorphic to K4, K3,3 or Q. However, neither K4 nor Q
contain a subgraph isomorphic to K2,3. We conclude that Γ ∼= K3,3. �
Lemma 4.5. Let Γ be a cubic vertex-transitive graph other than K3,3. Let G ≤ Aut(Γ)
be cyclic, and let u and v be two adjacent vertices belonging to distinct G-orbits. If 
|uG| ≥ |vG|, then |uG| = i|vG| for some i ∈ {1, 2, 3}. Moreover, if i �= 1, then every 
vertex in uG has exactly one neighbour in vG, while a vertex in vG has i neighbours in 
uG.

Proof. Let n = |uG| and m = |vG| and note that ugi = u if and only if n|i. Similarly, 
vg

i = v if and only if m|i. It follows that v is adjacent to ugim for all i ∈ Z. Let λ be 
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the number of neighbours of v in uG. Clearly, λ ∈ {1, 2, 3}. If λ = 1, then ugm = u and 
thus n|m. Since by hypothesis n ≥ m, we see that n = m. If λ = 2, then ug2m = u. It 
follows that n|2m and thus n = 2m or n = m. Finally, if λ = 3, then ug3m = u and 
n|3m. Then n = 3m, n = 3

2m or n = m. However, if n = 3
2m, then by Lemma 4.4, 

Γ ∼= K3,3, a contradiction. It follows that n = 3m or n = m. Therefore |uG| = i|vG| for 
some i ∈ {1, 2, 3}.

To prove the second part of the statement, suppose i �= 1 and that u is adjacent to a 
vertex vg

j for some 0 < j < m. Note that vgj is also adjacent to ugm , ugj and ugj+m. 
Since 0 < j < m and |uG| ≥ 2m, we see that the vertices in {u, ugm

, ugj

, ugj+m} are 
all distinct. Thus, v has four neighbours, contradicting Γ being a cubic graph. It follows 
that a vertex in uG has exactly one neighbour in vG. In particular, this means there 
are exactly |uG| = im edges between uG and vG, and thus a vertex in vG has exactly i
neighbours in uG. �
Corollary 4.6. Let Γ be a cubic vertex-transitive graph, let G = 〈g〉 ∈ Aut(Γ) and let u
and v be two adjacent vertices. If |uG| = 3|vG| then uG is the only neighbour of vG in 
Γ/G.

Proof. By Lemma 4.5, every vertex in vG has three neighbours in uG, and thus no 
neighbours in orbits other than uG. Hence uG is the only neighbour of vG in Γ/G. �

In the next theorem, we prove the first part of Theorem 1.6.

Theorem 4.7. If Γ is a cubic vertex-transitive graph other than K3,3, then every 
g ∈ Aut(Γ) admits a regular orbit and every orbit of 〈g〉 has size �(g)

k for some 
k ∈ {1, 2, 3, 4, 6}.

Proof. Let g ∈ Aut(Γ), G = 〈g〉 and let u ∈ V(Γ) be such that �(g) = |uG| ≥ |vG| for all 
v ∈ V(Γ). We will show that the size of any G-orbit divides |uG|. Let v ∈ V(Γ) \ {uG}.

Consider the quotient graph Γ/G. Since Γ is connected so is Γ/G and thus there exists 
a uGvG-path W = uG

0 uG
1 . . . uG

n where u0 = u, un = v and each ui is adjacent to ui+1

in Γ.
Suppose that for some i, j ∈ {0, . . . , n} and m ∈ Z, we have |i − j| = 1 and |uG

i | =
3|uG

j | = 3m. Then by Corollary 4.6, uG
i is the only neighbour of uG

j in Γ/G. It follows 
that j = 0 (and thus i = 1) or j = n (and thus i = n − 1). However, since |uG

0 | ≥ |uG
1 |

(by our assumption on u), we see that j �= 0 and thus j = n. This together with 
Lemma 4.5 implies that for all i ∈ {0, . . . , n − 2} we have |ui| = k|ui+1| for some 
k ∈ {1

2 , 1, 2}. Then |uG
n−1| = 1

2r |uG
0 | for some integer r, 0 ≤ r ≤ n − 1, and thus 

|vG| = |uG
n | = 1

3·2r |uG
0 | = 1

3·2r |uG|.
Now, if no two orbits uG

i and uG
j satisfy |uG

i | = 3|uG
j |, then by Lemma 4.5, we have 

|ui| = ki|ui+1| with ki ∈ {1
2 , 1, 2} for all i ∈ {0, . . . , n − 1}, and thus |uG| = 1

2r |vG| for 
some r ∈ {0, . . . , n}.
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Let m = |vG|. We have shown above that o(g) = �(g) = |uG| = km where k is an 
integer not divisible by any prime larger than 3. In particular, uG is a regular orbit of 
g. Observe that gm ∈ Gv and that |ugm | = k. In particular, gm is an element fixing a 
vertex of order at least k. But then Theorem 1.5, which was proved in Section 3, implies 
that k ≤ 6 and thus k ∈ {1, 2, 3, 4, 6}. �
Corollary 4.8. Theorem 1.2 holds in the case d = 3. That is, meo(Γ) ≤ n for every cubic 
vertex-transitive graph Γ with n vertices.

Proof. Observe that in the case Γ �∼= K3,3 this follows directly from the existence of 
a regular orbit guaranteed by Theorem 4.7. On the other hand, if Γ ∼= K3,3, then 
meo(K3,3) = 6 = n. �
Remark 4.9. Observe that for every k ∈ {1, 2, 3, 4, 6}, there exists a graph Γ and an 
automorphism g ∈ Aut(Γ) such that g has an orbit of size �(g)/k. The Pappus graph 
admits an automorphism g with orbits of sizes 6, 3, 2 and 1 while the Heawood graph 
admits an automorphism with orbits of size 4, 2 and 1 (see Fig. 4.1).

Lemma 4.10. Let Γ be a cubic vertex-transitive graph, let G ≤ Aut(Γ) be a cyclic group, 
and let u, v, w ∈ V(Γ) such that u ∼ v and u ∼ w. If |uG| = i|vG| = i|wG| for some 
i ∈ {2, 3} then the girth of Γ is at most 4 and if i = 3, then Γ is isomorphic to K4, K3,3
or the cube graph Q3.

Proof. Let g be a generator of G and set m = |vG| = |wG|. Then ugm �= u, but vgm = v

and wgm = w. It follows that ugm ∼ v and ugm ∼ w and thus (u, v, ugm

, w) is a 4-cycle. 
Moreover, if i = 3, then by Lemma 4.4, Γ is arc-transitive and by Lemma 4.1, Γ is 
isomorphic to K4, K3,3 or Q3. �

The following remark, which will be used in the proof of Theorem 1.4, is a consequence 
of Corollary 4.6, Lemma 4.5, and Theorem 4.7.

Lemma 4.11. Suppose Γ is a cubic vertex-transitive graph other than K4, K3,3 or the 
cube Q3, let g ∈ Aut(Γ). Then the following hold.

(1) for i ∈ {1, 2}, an orbit of size �(g)/3i is adjacent to only one orbit, which has size 
�(g)/i;

(2) for i ∈ {1, 2} an orbit of size �(g)/i is adjacent to at most one orbit of size �(g)/3i;
(3) if vG has size �(g)/4 then there exists an orbit wG of size �(g)/2 (not necessarily 

adjacent to vG).

Proof. Let u ∈ V(Γ) be such that |uG| = �(g) and let vG be any other orbit. Since Γ
is connected there exists a vGuG-path W = vG0 vG1 . . . vGn in Γ/G where v0 = v, vn = u

and each vGi is adjacent to vGi+1.
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To show that (1) holds, suppose |vG0 | = �(g)/3i. By Lemma 4.5, if j ∈ {0, . . . , n}, 
then |vGj+1| ≥ |vGj | implies |vGj | = k|vGj | for some k ∈ {1, 2, 3}. Then, since |vGn | = 3i|vG0 |, 
there must exist j ∈ {0, . . . , n} such that |vGj+1| = 3|vGj |. By Corollary 4.6, vGj+1 is the 
only orbit adjacent to vGj , which implies that j = 0. That is, vGj = vG0 = vG. Thus, vG
is adjacent to only one orbit of size 3|vG| = 3 · �(g)/3i = �(g)/i. Therefore (1) holds.

Now, to show that (3) holds, suppose |vG0 | = �(g)/4. Let j ∈ {1, . . . , n} be the smallest 
integer for which |vGj | �= �(g)/4. If |vGj | < |vGj−1| = �(g)/4, then by Lemma 4.5, |vGj | =
|vGj−1|/k = �(g)/4k holds for some k ∈ {2, 3}, but this contradicts Theorem 4.7. Then 
|vGj | > |vGj−1| = �(g)/4, and by Lemma 4.5 we have |vGj | = k · �(g)/4 for some k ∈ {2, 3}. 
However, by Theorem 4.7, k �= 3. It follows that |vGj | = 2�(g)/4 = �(g)/2 and thus (3) 
holds.

Finally, let us show that (2) holds. Suppose vG = �(g)/i for some i ∈ {1, 2}. If v has 
two neighbours w1 and w2 such that |vG| = 3|wG

1 | = 3|wG
2 |, then by Lemma 4.10, Γ is 

isomorphic to K4, K3,3 or Q3. �
4.1. Proof of Theorem 1.6

We are now ready to finish the proof of Theorem 1.6. For the rest of the section, 
let Γ be a cubic vertex-transitive graph not isomorphic to K3,3, let g ∈ Aut(Γ) and let 
G = 〈g〉. We may assume that G is not transitive on the vertices of Γ. In Theorem 4.7
we have already proved that g has at least one regular orbit, say uG. Let us now assume 
in addition that Γ is not isomorphic to K4, the cube graph Q3, the Petersen graph, the 
Möbius-Kantor graph, the Pappus graph or the Heawood graph. We then need to show 
that every regular orbit of g other than uG is adjacent to uG in Γ/G.

Since the order of G is smaller than n, uG is not the only orbit of G and since Γ
is connected, uG must be adjacent to another orbit in Γ/G. If any of the neighbouring 
orbits of uG has size |uG|, then the claim is proved. We shall thus assume that this is not 
the case. Thus, if vG is an orbit adjacent to uG, Lemma 4.5 implies that |uG| = k|vG| for 
some k ∈ {2, 3} and every vertex of uG is adjacent to precisely k vertices in vG. There 
are three cases (which are divided in a total of 7 subcases) to be considered, depending 
on the numbers of neighbours of uG in Γ/G.

Case 1: uG is adjacent to exactly one other orbit vG, where u ∼ v. Then |uG| = k|vG|
for some k ∈ {2, 3}.

Case 1.1: Suppose |uG| = 2|vG|. Since u has only one neighbour in vG and no neigh-
bours in the G-orbits apart from vG and uG, it follows that it has two neighbours in uG, 
which must be of the form ugi and ug−i for some i ∈ {1, . . . , |uG| − 1|}. Let m = |vG|, 
and observe that v ∼ u and v ∼ ugm , and the edges vu and vugm belong to the same 
G-orbit. Since Γ is vertex-transitive, there exists h ∈ Aut(Γ) mapping v to u. Clearly, 
one edge in {vu, vugm} is mapped by h to an edge in {ugi

, ug−i}. It follows that the edges 
uugi , uug−i , vu and vg

m belong to the same Aut(Γ)-orbit. That is, Γ is edge-transitive, 
and since it is cubic and vertex-transitive, it must be arc-transitive. If the girth of Γ
is smaller than 6, then 4.1 implies that Γ is isomorphic to K4, K3,3, Q3, the Petersen 
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Fig. 4.2. Cycles of length 6 and 4 through u according to Cases 1.1, 1.2 and 3.2.

graph or the dodecahedron graph GP(10, 2). However, among these five graphs only the 
dodecahedron graph has the property that every automorphism admits two adjacent 
regular orbits. Thus Γ is isomorphic to K4, K3,3, Q3, the Petersen graph. Otherwise, 
observe that for α ∈ {−1, 1}, Cα = (v, u, ugαi

, vg
αi

, ugαi+m

, ugm) is a cycle and thus Γ
has girth 6. Moreover, vu and vum each lie on both C0 and C1 (see Fig. 4.2). Therefore, 
if we let w be the third neighbour of v (that does not belong to uG), then the edge vw
must lie on one 6-cycle C �= Cα. Clearly C must visit either vu or vum, which implies 
that one edge incident to u (and therefore every edge of Γ by arc-transitivity) lies on at 
least three 6-cycles. It then follows from [8, Lemma 4.2] that Γ is isomorphic to Pappus 
Graph, the Heawood graph, the Möbius-Kantor graph GP(8, 3) or the Desargues graph 
GP(10, 3). I can be verified that every automorphism of GP(10, 3) admits two adjacent 
regular orbits.

Case 1.2: Suppose |uG| = 3|vG|. Observe that v has three distinct neighbours in uG, 
which implies that uG and vG are the only G-orbits of Γ. As in the previous case, u is 
adjacent to ugi and ug−i for some i ∈ {1, . . . , |uG| − 1|}. Furthermore v is adjacent to u, 
ugm and ug2m where m = |vG|. If m = 1 or m = 2, then Γ is isomorphic to K4 or Q3

respectively. If m ≥ 3, then the edge uv lies on 4 distinct 6-cycles (see Fig. 4.2), and by 
[8, Lemma 4.2], Γ is isomorphic to Heawood graph or the Pappus graph.

Case 2: uG has exactly two neighbouring orbits vG and wG, with u ∼ v and u ∼ w. 
We have three subcases.

Case 2.1: Suppose |uG| = 3|vG| = 3|wG|. By Lemma 4.10, Γ is isomorphic to either 
K4, K3,3, or Q.

Case 2.2: Suppose |uG| = 2|vG| = 2|wG|. By Lemma 4.5, u has exactly one neighbour 
in each vG and wG. Since the third neighbour of u does not belong to either vG or 
wG, then it has no choice but to belong to uG. To be more precise, u ∼ ugm where 
m = |vG| = 1

2 |uG|. Then (u, ugm

, v) and (u, ugm

, w) are 3-cycles in Γ, and the edge uugm

lies on both of them. Then, by Lemma 4.3, Γ ∼= K3,3.
Case 2.3: Suppose |uG| = 2|vG| = 3|wG|. Observe that u ∼ ugm where m = |vG| =

1
2 |uG|. Then (u, ugm

, v) is a 3-cycle, and since |uG| = 3|wG|, Γ is arc-transitive by 
Lemma 4.4. Then by Lemma 4.1, Γ ∼= K4.

Case 3: uG has three distinct neighbouring orbits, vG, wG, xG where u is adjacent to 
v, w and x.

Case 3.1: Suppose one of these orbits has size 1/3|uG|. Then by Lemma 4.4, Γ is 
arc-transitive. Furthermore, by the pigeon hole principle, two of these orbits must have 
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size 1/k|uG| for some k ∈ {2, 3}. It follows that Γ has a 4-cycle and by Lemma 4.1, Γ is 
isomorphic to K4, K3,3 or Q.

Case 3.2: Suppose |uG| = 2|vG| = 2|wG| = 2|xG| = 2m for some m ∈ Z. Observe 
that each of v, w and x is adjacent to both u and ugm and thus, every edge incident to 
u lies on two distinct 4-cycles (see Fig. 4.2). If the girth of Γ is 4, then by Lemma 4.2, 
Γ is isomorphic to K3,3 or the cube graph Q. If the girth of Γ is 3, then u must lie on a 
3-cycle. That is, two of the neighbours of u must be adjacent. Without loss of generality, 
assume v ∼ w. Then both (u, v, w) and (ugm

, v, w) are 3-cycles. In particular, all three 
edges incident to v lie on a 3-cycle. Since Γ is vertex-transitive, then every edge incident 
to u must lie on a 3-cycle. In particular, this implies that u and x have a common 
neighbour. This leads us to a contradiction, since neither v nor w is adjacent to x (the 
neighbourhoods of v and w are {u, ugm

, w} and {u, ugm

, v}, respectively).
This finishes the proof of Theorem 1.6.

5. Bounding the number of orbits and proofs of Theorem 1.4 and Theorem 1.7

The aim of this section is to prove Theorems 1.4 and 1.7. Throughout the section, let 
Γ denote a connected cubic graph of order n, let g ∈ Aut(Γ) and let G = 〈g〉. Recall that 
Theorem 1.4 asserts that

μ(g) ≤ 17n
6 o(g) (5.1)

(the second claim then follows by applying this inequality to an automorphism g of 
largest order), and in view of Theorem 4.7, it suffices to prove this inequality with the 
parameter o(g) substituted by �(g) (note that the inequality (5.1) clearly holds when 
Γ ≡ K3,3). Furthermore, recall that Theorem 1.7 asserts that unless Γ is isomorphic to 
K3,3, or to a Split Praeger-Xu graph, at least 5n

12 vertices belong to a regular orbit of g.
The validity of both theorems for graphs of small order can easily be confirmed by con-

sulting the census of cubic vertex-transitive graphs [30]. We may thus assume henceforth 
that n ≥ 20.

We begin by proving the inequality (5.1) for the case where Γ belongs to the family of 
Split Praeger-Xu graphs, which we now introduce (note that Theorem 1.7 holds trivially 
in this case).

For an integer r ≥ 3, let �PX(r, 1) denote the directed graph with the vertex-set 
Zr ×Z2 and with a directed edge pointing from (x, i) to (x + 1, j) for every x ∈ Zr and 
i, j ∈ Z2. For an integer s, 2 ≤ s ≤ r − 1, we let �PX(r, s) be the directed graph whose 
vertex-set is the set of all directed paths of length s in �PX(r, 1) and with a directed edge 
pointing from an s-path (u0, u1, . . . , us) to the successor s-paths (u1, . . . , us, us+1) and 
(u1, . . . , us, vs+1), where us+1 and vs+1 are the two out-neighbours of us in �PX(r, 1). 
We should point out that the directed graphs �PX(r, s) were first introduced in [37] in a 
slightly different way and were denoted C2(r, s). Several equivalent descriptions of the 
directed graphs �PX(r, s) and their undirected counterparts were discussed in [22].
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The Split Praeger-Xu graph SPX(r, s) is the graph obtained from �PX(r, s) by splitting 
each vertex u of �PX(r, s) into two vertices, denoted u− and u+, and by connecting each u−
with u+ for every vertex u of �PX(r, s), and every v+ to u− for every directed edge (v, u)
of �PX(r, s). The splitting operation was introduced in [34], where the graphs SPX(r, s)
appeared under the name Pls−1( �W(r, 2)).

Observe that the automorphism group of �PX(r, 1) is isomorphic to the semidirect 
product Cr

2 � Cr with the elementary abelian group Cr
2 being generated by automor-

phisms τi, i ∈ Zr, interchanging the vertices (i, 0) and (i, 1) while fixing all other vertices. 
Moreover, Aut( �PX(r, 1)) acts in an obvious way as a vertex-transitive group of automor-
phisms on �PX(r, s) for every s, 1 ≤ s ≤ r − 1, as well as on SPX(r, s). In fact, one can 
easily see that Aut( �PX(r, s)) ∼= Aut( �PX(r, 1)) and |Aut( �PX(r, s)) : Aut(SPX(r, s))| = 2. 
In this correspondence, an automorphism fixing a vertex of �PX(r, s) corresponds to an 
automorphism of �PX(r, 1) fixing a directed s-path of �PX(r, 1) and thus belongs to the 
group Cr

2. Similarly, an element g ∈ Aut(SPX(r, s)) fixing a vertex v+ of SPX(r, s) cor-
responds to an automorphism of �PX(r, s)) which fixes v. In particular, the exponent of 
the vertex-stabiliser in Aut(SPX(r, s)) is 2, and so meo◦(SPX(r, s)) = 2. We can now 
apply the inequality (2.3) in Lemma 2.4 to conclude that

μ(g) ≤ 2( n

�(g) − 1) + 1 <
17n

6 o(g) ,

where the second inequality follows from the fact that �(g) = o(g) by Theorem 1.6. We 
have thus proved the following.

Lemma 5.1. If Γ ∼= SPX(r, s) with r ≥ 3 and 1 ≤ s ≤ r − 1, then the inequality (5.1)
holds for every g ∈ Aut(Γ). In particular, Theorem 1.4 holds for the Split Praeger-Xu 
graphs.

This lemma, together with a recent result of Pablo Spiga and the first-named author 
of this paper [28], which bounds the number of vertices that can be fixed by a non-trivial 
automorphism in a cubic vertex-transitive graph, yields the following.

Corollary 5.2. Let Γ be a cubic vertex-transitive graph on n vertices admitting a non-
identity automorphism fixing more than n3 vertices of Γ. Then the inequality (5.1) holds 
for every g ∈ Aut(Γ). In particular, Theorems 1.4 and 1.7 hold for such a graph Γ.

Proof. As observed, both theorems hold for graphs on at most 20 vertices, hence we may 
thus assume that n > 20. By [28, Theorem 1.2], Γ is then isomorphic to a Split Praeger-
Xu graph SPX(r, s) with r ≥ 3 and s ≤ 2r/3. The result then follows by Lemma 5.1. �

We shall thus assume henceforth that n > 20 and that Γ is not a Split Praeger-Xu 
graph. Let k = n

o(g) = n
�(g) and let m = o(g). For an integer i dividing m, let Ωi be 

the set of vertices of Γ contained in a G-orbit of size m and let Ni denote the number 
i
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of G-orbits of size mi . Note that |Ωi| = m
i Ni. Moreover, by Lemma 4.5, Ωi = ∅ unless 

i ∈ {1, 2, 3, 4, 6}. Recall that our aim is to show that G has at most 17k/6 orbits on V(Γ)
and that |Ω1| ≥ 5n

12 .
By applying line (1) of Lemma 4.11 with i ∈ {1, 2}, we see that every G-orbit X of 

length m/3i is adjacent to a G-orbit Y of size m/i, and by line (2), X is the only orbit 
of length m/3i which is adjacent to Y . This implies that the number of G-orbits of size 
m/3i is at most the number of G-orbits of size m/i; that is:

N6 ≤ N2, (5.2)

N3 ≤ N1. (5.3)

Now observe that mN1 + m
3 N3 = |Ω1| + |Ω3| ≤ n = mk and thus N1 + 1

3N3 ≤ k. From 
this and inequality (5.3), we obtain

N3 ≤ 3
4k. (5.4)

Moreover, since N1 ≤ k − 1
3N3 and thus N1 + N3 ≤ k + 2

3N3. It follows from (5.4)
that

N1 + N3 ≤ 3
2k. (5.5)

Clearly if m is odd, then G can only have orbits of size m and m3 . That is, V(Γ) =
Ω1 ∪ Ω3 and μ(g) = N1 + N3. By inequality (5.5) we have μ(g) ≤ 3

2k < 17
6 k, and 

Theorem 1.4 holds in this case. Furthermore,

|Ω1| = mN1 = n− m

3 N3 ≥ n− m

3 N1 = n− 1
3 |Ω1|,

implying that |Ω1| ≥ 3n/4 ≥ 5n/12, showing that also Theorem 1.7 holds in this case. 
Hence, we may assume that m is even.

Now, consider the automorphism g
m
2 and observe that it fixes every orbit of size m2

as well as every orbit of size m4 . That is, the set Ω2 ∪Ω4 is fixed point-wise by g
m
2 . Since 

the order of g is m, the automorphism g
m
2 is non-trivial, and since, by our assumption, 

no non-trivial automorphism fixes more than one third of the vertices, it follows that 
|Ω2 ∪ Ω4| ≤ n

3 . That is

N2
m

2 + N4
m

4 ≤ n

3 = mk

3 , (5.6)

and thus

N4 ≤ 4
k − 2N2. (5.7)
3
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Now, μ(g) = N1+N2+N3+N4+N6, but N4 ≤ 4
3k−2N2 and N6 ≤ N2 by inequalities 

(5.7) and (5.2). Then

μ(g) ≤ N1 + N2 + N3 +
(

4
3k − 2N2

)
+ N2 = N1 + N3 + 4

3k = 17
6 k,

where the last equality follows from (5.5). This completes the proof of Theorem 1.4.
To finish the proof of Theorem 1.7, recall that Ω6 = m

6 N6 and N6 ≤ N2. Moreover, 
by inequality (5.6), we have N2 ≤ 2

3k and thus

|Ω6| = m

6 N6 ≤ m

6 N2 ≤ m

6 · 2
3k = 1

9mk = 1
9n. (5.8)

Now, n = |Ω1| + |Ω2| + |Ω3| + |Ω4| + |Ω6| but |Ω2| + |Ω4| ≤ 1
3n and |Ω6| ≤ 1

9n by 
inequalities (5.6) and (5.8), respectively. Therefore

|Ω1| = n− (|Ω2| + |Ω4|) − |Ω6| − |Ω3| ≥ n− 1
3n− 1

9n− |Ω3| = 5
9n− |Ω3| (5.9)

Since N3 ≤ N1 we have Ω3 = m
3 N3 ≤ m

3 N1 = 1
3Ω1. From this and (5.9), we have 

|Ω1| ≥ 5
9n − |Ω3| ≥ 5

9n − 1
3 |Ω1|. We conclude that |Ω1| ≥ 5n

12 . This concludes the proof 
of Theorem 1.7.

Remark 5.3. We would like to point out that the constant 17
6 featuring in Theorem 1.4

could most likely be substituted with a smaller value. However, it is not possible to do 
better than replacing it by 2, as the following two extreme examples show. First, consider 
the case where G := 〈g〉 is transitive (that is, when the graph is a circulant). Then G has 
a single orbit of length n = |V(Γ)|, n/o(g) = 1 and thus μ(g) = 1 = 2n/o(g) − 1. On the 
other side of the spectrum, the Split Praeger-Xu graphs SPX(n/2, 1) admit a group of 
automorphisms of order 2 having n − 2 orbits on V(Γ), two of which have size 2 (while 
all others consist of a single vertex). Here the number of orbits equals 2n/o(g) − 2.

Conjecture 5.4. Let Γ be a cubic vertex-transitive graph of order n, and let g ∈ Aut(Γ). 
Then 〈g〉 has at most 2n

o(g) − 1 orbits on V(Γ).

Remark 5.5. As with the bound given in Theorem 1.4, here too we suspect that the 
constant 12/5 appearing in Theorem 1.7 can be improved. It is not possible to do better 
than 2/3 as the following family of examples show. For an even integer r > 0, let Ψ(r)
be the graph with vertex set Zr × Z3 and with edges of the form {(i, j), (i − 1, j)}, 
{(i, j), (i + 1, j + 1)} and {(i, j), (i + 1, j + 2)} for all even i ∈ Zr. The graph Ψ(r) is a 
cubic vertex-transitive graph of order 3r (for more details see [36, Section 2.4] where the 
graph Ψ(r) is called Σr). Observe that the permutation g that interchanges (i, 0) with 
(i, 1) while fixing (i, 2) for all i ∈ Zr is an automorphism of Ψ(r). The regular orbits of 
g are the sets of the form {(i, 0), (i, 1)}. It follows that two thirds of the vertices of Ψ(r)



P. Potočnik et al. / Journal of Combinatorial Theory, Series B 166 (2024) 123–153 143
lie on a regular orbit of g. We believe that, excluding the family of the Split Praeger-Xu 
graphs, this is an extreme case.

Conjecture 5.6. Let Γ be a cubic vertex-transitive graph of order n not isomorphic to 
K3,3 or a Split Praeger-Xu graph, and let g ∈ Aut(Γ). Then at least 2

3n vertices lie on a 
regular orbit of g.

6. The order of automorphisms of locally-semiprimitive graphs

Let Γ be a graph, let G ≤ Aut(Γ) and let v ∈ V(Γ). The permutation group induced 
by the action of the stabiliser Gv on the neighbourhood Γ(v) of the vertex v will be 
denoted GΓ(v)

v . Observe that if G acts transitively on V(Γ), then up to permutation 
isomorphism the group GΓ(v)

v is independent of the choice of v. In this case, if L is an 
arbitrary permutation group permutation isomorphic to GΓ(v)

v , we say that Γ is of local 
G-action L; if G = Aut(Γ), then the prefix G can be omitted.

A transitive permutation group G ≤ Sym(Ω) is called semiregular provided that 
Gω = 1 for every ω ∈ Ω. Furthermore, following [2], we call a transitive permutation 
group G ≤ Sym(Ω) semiprimitive provided that every normal subgroup N of G is either 
transitive or semiregular; see [12] for more results on semiprimitive groups. Observe that 
every primitive, as well as every quasiprimitive permutation group is semiprimitive. For 
a graph Γ and G ≤ Aut(Γ) we say that Γ is locally G-semiprimitive (locally G-primitive) 
whenever the permutation group GΓ(v)

v is semiprimitive (primitive, respectively) for every 
vertex v.

A still unresolved conjecture of Richard Weiss [51] states that for every valence d
there exists a constant cd such that for every finite connected G-arc-transitive locally 
G-primitive graph Γ the order of the vertex-stabiliser Gv is bounded by cd, and in 
particular, meo◦(G) ≤ cd and meo(G) ≤ cd|V(Γ)|. Even though several partial results 
were proved (see, for example [25,39,43,46,48]), this conjecture is still wide open. Weiss’ 
conjecture was strengthened first by Cheryl Praeger [38], who relaxed the condition of 
local primitivity to local quasi-primitivity, and then by Spiga, Verret and the first-named 
author of this paper [29], who relaxed the condition to local semiprimitivity (see also 
[10,11]).

A starting point to most attempts to prove Weiss’s conjecture is the so-called 
Thompson-Wielandt Theorem (see [53, Theorem 6.6]). Here is a variant for locally 
semiprimitive graphs which was proved in [44].

Theorem 6.1. [44, Corollary 3] Let Γ be a connected G-arc-transitive locally G-
semiprimitive graph, let {u, v} be an edge of Γ and let G[1]

uv be the point-wise stabiliser of 
all the vertices at distance 1 from u or v. Then G[1]

uv is trivial or a p-group.

Lemma 6.2. Let Γ be a connected G-arc-transitive d-valent graph and let {u, v} be an 
edge of Γ. Then |Gv| ≤ d!(d − 1)!|G[1]

uv|.
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Proof. Let G[1]
v be the point-wise stabiliser of the action of Gv on Γ(v). Observe that G[1]

uv

is the kernel of the action of G[1]
v on Γ(u) \{v}. But then |Gv| ≤ d!|G[1]

v | ≤ d!(d −1)!|G[1]
uv|, 

as claimed. �
Theorem 1.3 now easily follows from the above two results and Corollary 2.3 in the 

following way. Let Γ be a connected G-arc-transitive locally G-semiprimitive graph of 
valence d and let {u, v} be an edge of Γ. By Lemma 6.2, |Gv| =≤ d!(d − 1)!|G[1]

uv|. Since, 
by Theorem 6.1, G[1]

uv is trivial or a p-group, Corollary 2.3 now implies that o(g) ≤
d!(d − 1)!�(g) for every g ∈ G. We have thus shown that meo(G) ≤ cd|V(Γ)|, where 
cd = d!(d − 1)!. This completes the proof of Theorem 1.3.

7. The order of automorphisms of quartic vertex-transitive graphs

In this section we prove Theorem 1.2 for the case of quartic graphs. That is, we 
prove that meo(Γ) ≤ 9|V(Γ)| holds for every finite connected vertex-transitive graph of 
valence 4. As we shall see, the proof quickly reduces to proving a bound on the exponent 
of a Sylow 3-subgroup of a vertex-stabiliser in a finite connected 6-valent arc-transitive 
graph. We thus begin by proving the following result, which is a generalisation of [47, 
Theorem 4.9].

Proposition 7.1. Let L be a permutation group on Ω, let p be a prime and let H a p-
subgroup of L. Suppose that there exist x, y ∈ Ω such that

• H = 〈Hx, Hy〉,
• xH ∪ yH = Ω, and
• |H : Hx| = |H : Hy| = p.

Let Γ be a connected G-vertex-transitive and G-edge-transitive graph with local G-action 
L, let v be a vertex of Γ and identify GΓ(v)

v with L. If S is a p-subgroup of Gv that 
projects to H along the natural projection Gv → L, then S has the following properties:

(1) S has nilpotency class at most 3;
(2) S contains an elementary abelian p-subgroup of order at least |S|2/3;
(3) |Z(S)|3 ≥ |S|;
(4) S has exponent at most p2.

Proof. Let u and w be the neighbours of v corresponding to x and y under the identifi-
cation of Γ(v) with Ω.

We show that the arcs (u, v) and (v, w) are in the same G-orbit. We argue by contra-
diction and we suppose that this is not the case. Since Γ is G-edge-transitive, it follows 
that (u, v) is in the same G-orbit as (w, v). This implies that u and w are in the same 
Gv-orbit and hence x and y are in the same L-orbit. This implies that L is transitive, 
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so Γ is G-arc-transitive and hence (u, v) and (v, w) are in the same G-orbit, which is a 
contradiction.

Let φ ∈ G such that (u, v)φ = (v, w). We show that 〈S, φ〉 is transitive on V(Γ). 
For i ∈ Z, let vi = vφ

i and let Si = Sφi . Note that (v−1, v0, v1) = (u, v, w) and hence 
Γ(v0) = (v−1)S0 ∪ (v1)S0 . Conjugating by φi, we obtain that Γ(vi) = (vi−1)Si ∪ (vi+1)Si

for every i ∈ Z. Let G∗ = 〈Si | i ∈ Z〉 and let X = v〈φ〉 = {vi | i ∈ Z}. Note that 
G∗ ≤ 〈S, φ〉, and hence it suffices to show that XG∗ = V(Γ). By contradiction, suppose 
that there exists a vertex not in XG∗ and choose one with minimum distance to X. Call 
this vertex α and let (p0, . . . , pn−1, pn) be a shortest path from α to a vertex of X. In 
particular, p0 = α and pn = vi for some i ∈ Z. Since Γ(vi) = (vi−1)Si ∪ (vi+1)Si , there 
exists σ ∈ Si ≤ G∗ such that (pn−1)σ ∈ {vi−1, vi+1} ⊆ X. Since α is not in SG∗ , neither 
is ασ, but ασ is closer to X than α is, which is a contradiction.

From now on, we follow the notation of [5] and [14] as closely as possible. Let P = S, 
let R = Su and let Q = Sw. Note that Rφ = Q, and R and Q both have index p in P .

Let N be the subgroup of P generated by all the subgroups of R that are normalised 
by φ. By [14, Proposition 2.1], N is normal in P . By definition, N is normalised by φ
and hence N is normalised by 〈P, φ〉. On the other hand, we have shown that 〈P, φ〉 is 
transitive on V(Γ). Since N ≤ P ≤ Gv, it follows that N = 1. This shows that condition 
(1.1) of [5] is satisfied.

Let |S| = pt and let u, v and x1, . . . , xt be as in [5, Theorem 1] and let E = 〈x1, . . . , xu〉. 
By [5, Lemma 2.2 (d,f,g)], P has nilpotency class at most 3, Z(P ) = 〈xv+1, . . . , xu〉 and 
[P, P ] is elementary abelian. It follows from [5, Lemma 2.1] that P is generated by 
elements of order p and that |P | = pt, |E| = pu and |Z(P )| = pu−v. It also follows 
from [5, Theorem 1 (1.2-1.5)] that v = t −u, u ≥ 2

3 t, E ≤ P and E is elementary abelian 
which concludes the proof of (2). Since v = t −u, |Z(P )| = pu−v = p2u−t ≥ pt/3 = |P |1/3
and (3) follows. Finally, P has exponent at most p2 by [47, Lemma 3.6]. �
Lemma 7.2. Let p be an odd prime and let L be a permutation group of degree 2p, either 
transitive or having two orbits of size p, and let H be a Sylow p-subgroup of L. One of 
the following holds:

(1) H is semiregular of order p, or
(2) H satisfies the first part of the hypothesis of Proposition 7.1.

Proof. Since p is odd, |H| divides p2. If |H| = p2, then H must be isomorphic to Cp×Cp

acting naturally with two orbits of size p and it is easy to check that the first part of the 
hypothesis of Proposition 7.1 is satisfied. Since p divides the size of an orbit of L, H �= 1
hence |H| = p.

If L is primitive then, a well known consequence of the classification of finite simple 
groups states that either Alt(2p) ≤ L or p = 5 and Alt(5) ≤ L ≤ Sym(5) (see for 
example [24]). In the former case, |H| = p2 while in the later case, p does not divide |Lx|
hence H is semiregular. If L admits a system of p blocks of size 2, then again p does not 
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divide |Lx|. If L admits a system of 2 blocks of size p, then H is contained in the setwise 
stabiliser of the blocks, which has two orbits of size p. So we may assume that L has two 
orbits of size p.

We may assume that H is not semiregular, and thus |Hx| = p for some x ∈ Ω. Since 
|H| = p, H fixes x, so H fixes p points and has one orbit of size p, with representative 
y, say. Now, x and y must be representatives of the two orbits of L and there must be 
another Sylow subgroup H ′ that is transitive on xL and, since it is conjugate to H, it 
must fix yL pointwise. Now, |〈H, H ′〉| = p2, which is a contradiction. �

Note that the hypothesis that p is odd is necessary as if p = 2, then L = H = D4

in its natural action is a counterexample. (It is neither semiregular nor generated by 
point-stabilisers.)

Corollary 7.3. Let p be an odd prime and let Γ be a connected G-vertex-transitive and G-
edge-transitive graph of valency 2p, and let S be a Sylow p-subgroup of a vertex-stabiliser 
Gv. Then S has the properties at the end of Proposition 7.1.

Proof. Let L be the local action at v. This is a permutation group of degree 2p. It 
is either transitive, or has two orbits of size p. Let H be the projection of S onto L. 
Note that H is a Sylow p-subgroup of L. We apply Lemma 7.2 to conclude that H is 
semiregular or H satisfies the first part of Proposition 7.1. If H is semiregular, then S
is arc-semiregular and |S| = p and clearly it satisfies all the properties. Otherwise, we 
apply Proposition 7.1. �

Equipped with Corollary 7.3, we can now finish the proof of Theorem 1.2 for the 
case of quartic graphs. For the rest of the section, let Γ be a finite connected vertex-
transitive graph of valence 4, let G = Aut(Γ) and let v ∈ V(Γ). Then GΓ(v)

v is permutation 
isomorphic to one of the groups:

(1) the doubly transitive permutation groups Sym(4), Alt(4) of degree 4;
(2) the transitive groups D4, C4, C2 × C2 of degree 4;
(3) {id}, C2 × C2 or C3 in their unique intransitive faithful actions on 4 points, or C2

either its action with two orbits of length 2 or in its action with three orbits, one of 
length 2 two of length 1;

(4) Sym(3) in its unique faithful action on 4 points.

If (1) occurs, then G acts transitively on the 2-arcs of Γ (where a 2-arc is a triple 
(w, u, v) of distinct vertices such that u is adjacent to both w and v). Based on the 
results in [9,52] it was proved in [27] that Gv is then isomorphic to one of 7 finite groups. 
In particular, it follows from [27, Theorem 4] that exp(Gv) divides 23 ·32. It then follows 
from Corollary 2.3 that o(g) ≤ 9�(g) for every g ∈ G.
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If either (2) or (3) occurs, then the fact that GΓ(v)
v is a p-group for p = 2 or p = 3, 

the connectivity of Γ implies that Gv is a p-group, and Corollary 2.3 then yields that 
o(g) = �(g).

For the rest of the section we will assume that (4) occurs. Then every vertex v ∈ V(Γ)
has a unique neighbour v′ which is fixed by every automorphism in Gv. Observe that 
v′′ = v for every v ∈ V(Γ) and that the set M = {{v, v′} : v ∈ V(Γ)} forms a complete 
matching of Γ invariant under the action of G.

Think of the edges in M red and the edges outside M blue. Similarly, call an arc blue 
or red if its underlying edge is blue or red. Observe that G has two orbits on the arc-set 
of Γ, one consisting of all blue arcs and of all red arcs.

Let Λ be the graph with vertex-set M and with two red edges vv′, uu′ ∈ M adjacent 
in Λ whenever one of v, v′ is adjacent to one of u, u′. Clearly, every element of G (in its 
action on M) induces an automorphism of Λ. Let K denote the kernel of the action of 
G on M . Then G/K is a vertex-transitive group of automorphisms of Λ.

Let e := vv′ be a red edge of Γ, let a, b, c be the three neighbours of v distinct from v′

and let x, y, z be the three neighbours of v′ distinct from v. Then the neighbourhood of e
in Λ is {aa′, bb′, cc′, dd′, xx′, yy′, zz′}. Observe also that the stabiliser Ge acts transitively 
on the set {a, b, c, x, y, z}, and thus also on the neighbourhood of e in Λ. In particular, 
G/K is not only vertex-transitive group of automorphism of Λ but in fact arc-transitive.

Since a, b, c are pairwise distinct, so are aa′, bb′ and cc′. The valence of Λ is thus at 
most 6 and at least 3. Observe also that since GΓ(v)

v
∼= Sym(3) the vertex-stabiliser Gv

contains an element g acting on {a, b, c} as the permutation (a b c) and on {x, y, z} as 
(x y z).

Suppose first that the valence of Λ is less than 6. Then the red edge aa′ equals one of 
the edges xx′, yy′ or zz′, say xx′. By applying the automorphism g twice, we see that 
yy′ = bb′ and zz′ = cc′, implying that the valence of Λ is 3 in this case. In particular, Λ
is a cubic G/K-arc-transitive graph. By [49], the order of the vertex-stabiliser (G/K)e
is then of the form 3 · 2s−1 for some s ≤ 5. Let us now consider the kernel K. Since 
G acts transitively on the arcs of Λ, the subgraph B of Γ induced by the blue edges 
between two adjacent distinct red edges uu′ and ww′ is independent of the choice of uu′

and ww′ and admits an automorphism swapping the pair {u, u′} with the pair {w, w′}. 
Since there are precisely six blue edges adjacent to any given red edge it follows that B
consists of two edges and must thus be isomorphic to 2K2. By the connectivity of Γ, this 
implies that every element of K either fixes each pair {w, w′}, w ∈ V(Γ) point-wise or 
swaps the two vertices in each such pair. In particular, the order of K is at most 2. This 
implies that the order of Ge is at most twice the order of (G/K)e and thus equal to 3 ·2s
for some s ≤ 5. Since Gv is of index 2 in Ge, Corollary 2.3 implies that o(g) ≤ 3�(g) for 
every g ∈ G.

We are thus left with the case where the valence of Λ is 6. Observe that then there is at 
most one blue edge between every two red edges, implying that K = 1 and G ≤ Aut(Λ). 
Moreover, the group GΛ

e (e) is permutation isomorphic to the group induced by the action 
of Ge on the vertices {a, b, c, x, y, z}. Observe that the latter group is imprimitive with 
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{a, b, c} being a block of imprimitivity, implying that its order is a divisor of 2|Sym(3)| =
12. The connectivity of Λ then implies that Ge is a {2, 3}-group. On the other hand, 
by Corollary 7.3, the Sylow 3-subgroup has exponent at most 9. In particular, exp(Ge)
divides 9 · 2α with α a positive integer. Since Gv has index 2 in Ge, Corollary 2.3 then 
implies that o(g) ≤ 9�(g) holds for every g ∈ G. This completes the proof of Theorem 1.2.

8. Vertex-transitive graphs with bounded order of automorphisms

This section is devoted to the proof of Theorem 1.8. We begin by proving that 
Md(n) → ∞ as n → ∞ for every integer d ≥ 3. Observe that this claim is equivalent to 
the statement that for every constant c there exists a constant nc such that every finite 
connected d-valent vertex-transitive graphs Γ with meo(Γ) ≤ c satisfies |V(Γ)| ≤ nc.

Before proceeding, let us prove the following folklore lemma, which was stated and 
proved in the cubic case in [45]; the proof provided there easily extends to an arbitrary 
valence.

Lemma 8.1. If Γ is a connected vertex-transitive graph of valence d, then Aut(Γ) contains 
a d-generated vertex-transitive subgroup.

Proof. Let v be a vertex of Γ and, for every u ∈ Γ(v), let gu ∈ Aut(Γ) such that vgu = u. 
Let X = {gu : u ∈ Γ(v)} and let G = 〈X〉. We claim that G acts transitively on V(Γ). 
Suppose the contrary and let w be a vertex which is closest to v among all the vertices 
of Γ not contained in the orbit vG. Then clearly w has a neighbour z contained in vG. 
Let g ∈ G be such that zg = v and let u = wg. Then u is a neighbour of v. Moreover, 
vgug

−1 = ug−1 = w. Since gu ∈ X and g ∈ G, we see that gug−1 ∈ G and thus w ∈ vG, 
a contradiction. �
Remark 8.2. Note that Lemma 8.1 proves the existence of a vertex-transitive subgroup 
of Aut(Γ) with a generating set of bounded cardinality, but says nothing about the 
minimum generating set for Aut(Γ). The question whether the cardinality of a minimum 
generating set of the automorphism group of a finite connected d-valent vertex-transitive 
graph can be bounded above by a function of d is an interesting open problem, which 
was (to the best of our knowledge) first posed by Pablo Spiga.

Now let c be an arbitrary constant and let Γ be a finite connected d-valent vertex-
transitive graph with meo(Γ) ≤ c. By Lemma 8.1, there exists a vertex-transitive sub-
group G of Aut(Γ) generated by d elements. Since meo(Γ) ≤ c, we see that meo(G) ≤ c

and thus exp(G) ≤ c!. By the solution of the restricted Burnside problem [20,55,56], 
there exists a constant nc such that every finite d-generated group of exponent at most 
c! has order less than nc. In particular, |G| ≤ nc. Since G acts transitively on V(Γ), 
this implies that |V(Γ)| ≤ nc, as claimed. This finishes the proof that Md(n) → ∞ as 
n → ∞.
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In order to complete the proof of Theorem 1.8, we shall now construct a sequence 
of connected d-valent vertex-transitive graphs Γi whose order is large with respect to 
exp(Aut(Γi)) (see Theorem 8.6 for details). But we first need to prove a few auxiliary 
results.

Lemma 8.3. If G is a group with a subgroup H of finite exponent and finite index |G :
H| = n, then exp(G) ≤ exp(H) exp(Sym(n)) ≤ n! exp(H).

Proof. Let K be the core of H in G. We can view G/K as a subgroup of Sym(n) and 
the result follows easily. �

For a group G and a prime p, let Op(G) be the largest normal p-subgroup of G. The 
following lemma is another folklore result.

Lemma 8.4. Let Γ be a connected G-vertex-transitive and G-edge-transitive graph and let 
{u, v} be an edge of Γ. If Op(GΓ(u)

uv ) = 1 and Op(GΓ(v)
uv ) = 1, then Op(G[1]

uv) = 1.

Proof. We have 1 = Op(GΓ(v)
uv ) ∼= Op(Guv/G

[1]
v ) hence Op(Guv) � G

[1]
v and thus 

Op(Guv) ≤ Op(G[1]
v ). Since Op(G[1]

v ) is characteristic in G[1]
v and thus normal in Guv, 

we have Op(G[1]
v ) = Op(Guv). On the other hand, G[1]

v /G
[1]
uv

∼= (G[1]
v )Γ(u) � G

Γ(u)
uv

hence Op(G[1]
v /G

[1]
uv) ≤ Op(GΓ(u)

uv ) = 1. It follows that Op(G[1]
v ) ≤ Op(G[1]

uv), but 
Op(G[1]

uv) ≤ Op(Guv) and thus Op(G[1]
uv) = Op(Guv) = Op(G[1]

v ). Since Γ is connected, 
G-vertex-transitive and G-edge-transitive, it follows that 〈Gv, Guv〉 = G, implying that 
Op(G[1]

uv) � G and Op(G[1]
uv) = 1. �

Lemma 8.5. If Γ is a connected finite G-arc-transitive d-valent graph such that GΓ(v)
v

∼=
Sym(d), then |Gv| ≤ c(d) where c(1) = 1, c(2) = 2, c(3) = 24 · 3, c(4) = 24 · 36, 
c(5) = 32 · 29 · 5 and c(d) = d!(d − 1)! for d ≥ 6.

Proof. The claim is trivial for d ∈ {1, 2}. For d = 3, the result follows by Tutte’s classical 
result on vertex-stabilisers in cubic arc-transitive graphs [49]. For d = 4, it follows from 
work of Gardiner, more specifically, from Theorems 3.9 and 3.15 and the remark following 
Lemma 3.3 in [9]. For d = 5, the result is given explicitly in [19, Theorem 1.1], but most 
of the work was done by Weiss [52].

Finally, if {u, v} is an edge of Γ, then GΓ(v)
uv

∼= (GΓ(v)
v )u ∼= Sym(d)u ∼= Sym(d − 1). In 

particular, if d ≥ 6, then Op(GΓ(u)
uv ) = 1 for every prime p. By Lemma 8.4, this implies 

Op(G[1]
uv) = 1. By the Thompson-Wielandt Theorem (see for example [9, Corollary 2.3]), 

it follows that G[1]
uv = 1. Now, |Gv/G

[1]
v | = |Sym(d)| = d!, while G[1]

v
∼= G

[1]
v /G

[1]
uv

∼=
(G[1]

v )Γ(u) ≤ (Guv)Γ(u) ∼= Sym(d − 1), so |G[1]
v | ≤ (d − 1)! and |Gv| ≤ d!(d − 1)!, as 

claimed. �
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Let us now recursively define the values rd(i) for i ∈ N ∪ {0} by setting:

rd(0) = d− 1 and rd(i + 1) = 1 + 2rd(i)(rd(i) − 1) for i ≥ 0.

Observe that rd(i) ≥ (i+1)2 holds for every i ≥ 0 and d ≥ 3. We can now prove the 
following.

Theorem 8.6. Let d ≥ 3 and let c(d) be as in Lemma 8.5. For every i ≥ 1, there exists a 
connected Cayley graph Γi of valence d such that

|V(Γi)| = 21+rd(0)+···+rd(i−1) ≥ i+12

while exp(Aut(Γi)) ≤ 2i(c(d)!).

Proof. Let G = 〈a1, . . . , ad | a2
1, . . . , a

2
d〉 and let F = 〈a1a2, . . . , a1ad〉 ≤ G. For all 

i, j ∈ {1, . . . , d}, we have aiaj = (a1ai)−1a1aj ∈ F . It follows that F consists of all 
the elements of G that can be written as words of even length in {a1, . . . , an}. Since all 
generators of F and all relators of G have even length, F does not contain any element 
of odd length, implying that |G : F | = 2. There are many ways to see that F is a 
free group. For example, one may use the Kurosh Subgroup Theorem [26, Corollary 2], 
the Reidemeister-Schreier Rewriting Process (see for example [21, Section III.8]) or note 
that F acts semiregularly on the vertices and edges of the tree Cay(G, {a1, . . . , ad}) and 
apply Serre’s Theorem [40, Theorem 4, Section 3.3]. As {a1a2, . . . , a1ad} is a minimal 
generating set for F (a1ai is the only generator of F involving ai and no relator of G
involves multiple generators), F has rank d − 1.

Consider the series

F = F0 ≥ F1 ≥ F2 ≥ · · ·

where Fi+1 = (Fi)2 for i ≥ 0. (That is, Fi+1 is the group generated by squares of 
elements in Fi.) Note that Fi+1 is the smallest normal subgroup of Fi such that Fi/Fi+1
is an elementary abelian 2-group. It follows that F/Fi has exponent at most 2i. By the 
Nielsen–Schreier Theorem [40, Theorem 5], Fi is free for every i ≥ 1.

We claim that, for every i ≥ 0, Fi is free of rank rd(i) and |Fi/Fi+1| = 2rd(i). We 
prove this by induction on i. For i = 0, we already saw that F0 = F is free of rank 
d − 1 = rd(0) and thus |F0/F1| = 2d−1. Now assume the result is true for some i ≥ 0. 
Since Fi is free of rank rd(i) and Fi+1 = (Fi)2, we have |Fi/Fi+1| = 2rd(i) and then the 
Schreier Index Formula gives that Fi+1 is free of rank 1 + 2rd(i)(rd(i) − 1) = rd(i + 1), 
as required (this argument was inspired by an argument of Mike Newman found in [50, 
Section 2]).

Since |G : F | = 2, we have F 2 ≤ G2 ≤ F . On the other hand, |G : G2| = 2d and 
|F : F 2| = 2d−1 so G2 = F 2 = F1. It follows that Fi is characteristic in G for every 
i ≥ 1. Let i ≥ 1 and let Qi = G/Fi. Observe that |Qi| = 21+rd(0)+···+rd(i−1) and
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exp(Qi) ≤ exp(F0/F1) · · · exp(Fi−1/Fi) ≤ 2i.

For x ∈ G, let x = Fix denote the image of x under the natural projection G → Qi. Let 
Si = {a1, . . . , ad} ⊆ Qi, Γi = Cay(Qi, Si) and Ai = Aut(Γi). If aj = ak with j �= k, then 
Fiaj = Fiak and hence F1aj = F1ak, contradicting the fact that G/F1 ∼= Zd

2. A similar 
contradiction is obtained under the assumption that aj is trivial for some j ∈ {1, . . . , d}. 
This implies that Γi is a connected Cayley graph of valency d on the group Qi. In 
particular, |V(Γi)| = |Qi| = 21+rd(0)+···+rd(i−1). Now recall that rd(i − 1) ≥i 2 and thus

|V(Γ)i| ≥ 2(i2) = i+12,

as required. Since Fi is characteristic in G, every permutation π in Sym(d) yields an 
automorphism of Qi mapping ai ∈ Si to aiπ ∈ Si. Since such an automorphism of Qi

preserves the set Si, it induces an automorphism of Γi. In particular, the local action 
(Ai)Γi(1)

1 is permutation isomorphic to Sym(d). Since Qi acts regularly on the vertices of 
Γi, it follows by Lemma 8.5 that |Ai : Qi| = |(Ai)1| ≤ c(d). By Lemma 8.3, this implies 
exp(Ai) ≤ exp(Qi)c(d)! ≤ 2i(c(d)!). �

It is now easy to finish the proof of Theorem 1.8. Let n be an arbitrary positive 
integer, let i = slog2(n) and let Γi be as in Theorem 8.6. Then |V(Γi)| ≥i+1 2 and 
exp(Aut(Γi)) ≤ 2i(c(d))!). Let kd = (c(d))!). Since i2 ≤ n <i+1 2, the above implies that

Md(i2) ≤ M(n) ≤ Md(i+12) ≤ Md(|V(Γi)|) ≤ meo(Γi) ≤ exp(Aut(Γi)) ≤ kd 2slog2(n),

finishing the proof of Theorem 1.8.
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