Title: | Controlling gene expression with deep generative design of regulatory DNA |
---|
Authors: | ID Zrimec, Jan (Author) ID Fu, Xiaozhi (Author) ID Sheikh Muhammad, Azam (Author) ID Skrekas, Christos (Author) ID Jauniskis, Vykintas (Author) ID Speicher, Nora K. (Author) ID Börlin, Christoph S. (Author) ID Verendel, Vilhelm (Author) ID Chehreghani, Morteza Haghir (Author) ID Dubhashi, Devdatt P. (Author) ID Siewers, Verena (Author) ID Fitz, Florian David (Author) ID Nielsen, Jens (Author) ID Zelezniak, Aleksej (Author) |
Files: | URL - Source URL, visit https://www.nature.com/articles/s41467-022-32818-8
PDF - Presentation file, download (2,88 MB) MD5: 00A03BAB7CA3E0332CD9DB73C1ED1A90
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | NIB - National Institute of Biology
|
---|
Abstract: | Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue. |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 30.08.2022 |
---|
Year of publishing: | 2022 |
---|
Number of pages: | str. 1-17 |
---|
Numbering: | Vol. 13 |
---|
PID: | 20.500.12556/DiRROS-19372 |
---|
UDC: | 577 |
---|
ISSN on article: | 2041-1723 |
---|
DOI: | 10.1038/s41467-022-32818-8 |
---|
COBISS.SI-ID: | 120155139 |
---|
Note: | Nasl. z nasl. zaslona;
Opis vira z dne 5. 9. 2022;
Št. članka: 5099;
|
---|
Publication date in DiRROS: | 17.07.2024 |
---|
Views: | 460 |
---|
Downloads: | 204 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |