Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Controlling gene expression with deep generative design of regulatory DNA
Authors:ID Zrimec, Jan (Author)
ID Fu, Xiaozhi (Author)
ID Sheikh Muhammad, Azam (Author)
ID Skrekas, Christos (Author)
ID Jauniskis, Vykintas (Author)
ID Speicher, Nora K. (Author)
ID Börlin, Christoph S. (Author)
ID Verendel, Vilhelm (Author)
ID Chehreghani, Morteza Haghir (Author)
ID Dubhashi, Devdatt P. (Author)
ID Siewers, Verena (Author)
ID Fitz, Florian David (Author)
ID Nielsen, Jens (Author)
ID Zelezniak, Aleksej (Author)
Files:URL URL - Source URL, visit https://www.nature.com/articles/s41467-022-32818-8
 
.pdf PDF - Presentation file, download (2,88 MB)
MD5: 00A03BAB7CA3E0332CD9DB73C1ED1A90
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo NIB - National Institute of Biology
Abstract:Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue.
Publication status:Published
Publication version:Version of Record
Publication date:30.08.2022
Year of publishing:2022
Number of pages:str. 1-17
Numbering:Vol. 13
PID:20.500.12556/DiRROS-19372 New window
UDC:577
ISSN on article:2041-1723
DOI:10.1038/s41467-022-32818-8 New window
COBISS.SI-ID:120155139 New window
Note:Nasl. z nasl. zaslona; Opis vira z dne 5. 9. 2022; Št. članka: 5099;
Publication date in DiRROS:17.07.2024
Views:453
Downloads:201
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Nature communications
Shortened title:Nat. Commun.
Publisher:Nature Publishing Group
ISSN:2041-1723
COBISS.SI-ID:2315876 New window

Document is financed by a project

Funder:Other - Other funder or multiple funders
Funding programme:SciLifeLab, Swedish Research council (Vetenskapsrådet)
Project number:2019-05356

Funder:Other - Other funder or multiple funders
Funding programme:BigData@Chalmers funding initiative (Area of Advance ICT)

Funder:ARRS - Slovenian Research Agency
Project number:J2-3060
Name:Sistemsko biološko podprto globoko učenje za interpretacijo načel regulacije rasti in obrambe rastlin

Funder:Other - Other funder or multiple funders
Funding programme:Public Scholarship, Development, Disability, and Maintenance Fund of the Republic of Slovenia
Project number:11013-9/2021-2

Funder:EC - European Commission
Funding programme:EU Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement
Project number:722 287

Funder:Other - Other funder or multiple funders
Funding programme:Swedish Research Council
Project number:2018-05973

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:biokemija, izražanje genov, bioinformatika, globoko učenje, sintetična biologija


Back