Title: | Cell-type proteomic and metabolomic resolution of early and late grain filling stages of wheat endosperm |
---|
Authors: | ID Zhang, Shuang (Author) ID Ghatak, Arindam (Author) ID Bazargani, Mitra Mohammadi (Author) ID Kramml, Hannes (Author) ID Zang, Fujuan (Author) ID Gao, Shuang (Author) ID Ramšak, Živa (Author) ID Gruden, Kristina (Author) ID Varshney, Rajeev K. (Author) ID Jiang, Dong (Author) ID Chaturvedi, Palak (Author) ID Weckwerth, Wolfram (Author) |
Files: | URL - Source URL, visit https://doi.org/10.1111/pbi.14203
PDF - Presentation file, download (1,83 MB) MD5: A06E80C8FACBE7596CB2E9E3C94C2F2F
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | NIB - National Institute of Biology
|
---|
Abstract: | The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes. |
---|
Keywords: | wheat, proteomics and metabolomics, aleurone, sub-aleurone, starchy endosperm, endosperm transfer cells |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.03.2024 |
---|
Year of publishing: | 2023 |
---|
Number of pages: | str. 1-17 |
---|
Numbering: | Vol. , iss. |
---|
PID: | 20.500.12556/DiRROS-19302 |
---|
UDC: | 577 |
---|
ISSN on article: | 1467-7644 |
---|
DOI: | 10.1111/pbi.14203 |
---|
COBISS.SI-ID: | 177668867 |
---|
Note: | Slovenski soavtorici: Živa Ramšak, Kristina Gruden;
First online: 4 December 2023;
|
---|
Publication date in DiRROS: | 15.07.2024 |
---|
Views: | 685 |
---|
Downloads: | 208 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |