Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Embedded complex curves in the affine plane
Authors:ID Alarcón, Antonio (Author)
ID Forstnerič, Franc (Author)
Files:.pdf PDF - Presentation file, download (579,03 KB)
MD5: 66C25739058840A607CD00C8F60979C1
 
URL URL - Source URL, visit https://link.springer.com/article/10.1007/s10231-023-01418-8
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:This paper brings several contributions to the classical Forster-Bell-Narasimhan conjecture and the Yang problem concerning the existence of proper and almost proper (hence complete) injective holomorphic immersions of open Riemann surfaces in the affine plane ${\mathbb C}^2$ satisfying interpolation and hitting conditions. We also show that in every compact Riemann surface there is a Cantor set whose complement admits a proper holomorphic embedding in ${\mathbb C}^2$. The focal point is a lemma saying the following. Given a compact bordered Riemann surface, $M$, a closed discrete subset $E$ of its interior ${\mathring M}=M\setminus bM$, a compact subset $K\subset {\mathring M}\setminus E$ without holes in $\mathring M$, and a ${\cal C}^1$ embedding $f: M\hookrightarrow \mathbb C^2$ which is holomorphic in $\mathring M$, we can approximate $f$ uniformly on $K$ by a holomorphic embedding $F: bM\hookrightarrow {\mathbb C}^2$ which maps $E\cup bM$ out of a given ball and satisfies some interpolation conditions.
Keywords:Riemann surfaces, complex curves, complete holomorphic embedding
Publication status:Published
Publication version:Version of Record
Publication date:01.08.2024
Year of publishing:2024
Number of pages:str. 1673-1701
Numbering:Vol. 203, iss. 4
PID:20.500.12556/DiRROS-19296 New window
UDC:517.5
ISSN on article:0373-3114
DOI:10.1007/s10231-023-01418-8 New window
COBISS.SI-ID:182950147 New window
Note:
Publication date in DiRROS:15.07.2024
Views:310
Downloads:170
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Annali di matematica pura ed applicata
Shortened title:Ann. mat. pura appl.
Publisher:Springer
ISSN:0373-3114
COBISS.SI-ID:24962816 New window

Document is financed by a project

Funder:Other - Other funder or multiple funders
Funding programme:Spain, State Research Agency (AEI)
Project number:PID2020-117868GB-I00

Funder:Other - Other funder or multiple funders
Funding programme:“Maria de Maeztu” Excellence Unit IMAG
Project number:CEX2020-001105-M

Funder:Other - Other funder or multiple funders
Funding programme:Junta de Andalucía
Project number:P18-FR-4049

Funder:EC - European Commission
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0291-2022
Name:Analiza in geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3005-2021
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0237-2022
Name:Holomorfne parcialne diferencialne relacije

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Riemannove ploskve, kompleksne krivulje, kompletna holomorfna vložitev


Back