Naslov: | Embedded complex curves in the affine plane |
---|
Avtorji: | ID Alarcón, Antonio (Avtor) ID Forstnerič, Franc (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (579,03 KB) MD5: 66C25739058840A607CD00C8F60979C1
URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s10231-023-01418-8
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | This paper brings several contributions to the classical Forster-Bell-Narasimhan conjecture and the Yang problem concerning the existence of proper and almost proper (hence complete) injective holomorphic immersions of open Riemann surfaces in the affine plane ${\mathbb C}^2$ satisfying interpolation and hitting conditions. We also show that in every compact Riemann surface there is a Cantor set whose complement admits a proper holomorphic embedding in ${\mathbb C}^2$. The focal point is a lemma saying the following. Given a compact bordered Riemann surface, $M$, a closed discrete subset $E$ of its interior ${\mathring M}=M\setminus bM$, a compact subset $K\subset {\mathring M}\setminus E$ without holes in $\mathring M$, and a ${\cal C}^1$ embedding $f: M\hookrightarrow \mathbb C^2$ which is holomorphic in $\mathring M$, we can approximate $f$ uniformly on $K$ by a holomorphic embedding $F: bM\hookrightarrow {\mathbb C}^2$ which maps $E\cup bM$ out of a given ball and satisfies some interpolation conditions. |
---|
Ključne besede: | Riemann surfaces, complex curves, complete holomorphic embedding |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.08.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | str. 1673-1701 |
---|
Številčenje: | Vol. 203, iss. 4 |
---|
PID: | 20.500.12556/DiRROS-19296 |
---|
UDK: | 517.5 |
---|
ISSN pri članku: | 0373-3114 |
---|
DOI: | 10.1007/s10231-023-01418-8 |
---|
COBISS.SI-ID: | 182950147 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 15.07.2024 |
---|
Število ogledov: | 313 |
---|
Število prenosov: | 172 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |