| Title: | Proper holomorphic embeddings with small limit sets |
|---|
| Authors: | ID Forstnerič, Franc (Author) |
| Files: | PDF - Presentation file, download (169,47 KB) MD5: 4CB92897E9E4C55F72495E3D17EDA49E
URL - Source URL, visit https://www.ams.org/journals/bproc/2024-11-08/S2330-1511-2024-00212-9/
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | Let $X$ be a Stein manifold of dimension $n\ge 1$. Given a continuous positive increasing function $h$ on ${\mathbb R}_+ = [0,\infty)$ with $\lim_{t\to\infty} h(t)=\infty$, we construct a proper holomorphic embedding $f=(z,w):X \hookrightarrow {\mathbb C}^{n+1}\times {\mathbb C}^n$ satisfying $|w(x)|<h(|z(x)|)$ for all $x\in X$. In particular, $f$ may be chosen such that its limit set at infinity is a linearly embedded copy of $\mathbb{CP}^n$ in $\mathbb{CP}^{2n}$. |
|---|
| Keywords: | Stein manifold, proper holomorphic embedding |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.01.2024 |
|---|
| Year of publishing: | 2024 |
|---|
| Number of pages: | str. 77-83 |
|---|
| Numbering: | Vol. 11 |
|---|
| PID: | 20.500.12556/DiRROS-18916  |
|---|
| UDC: | 517.5 |
|---|
| ISSN on article: | 2330-1511 |
|---|
| DOI: | 10.1090/bproc/212  |
|---|
| COBISS.SI-ID: | 195187203  |
|---|
| Note: |
|
|---|
| Publication date in DiRROS: | 13.05.2024 |
|---|
| Views: | 890 |
|---|
| Downloads: | 599 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |