Title: | Proper holomorphic embeddings with small limit sets |
---|
Authors: | ID Forstnerič, Franc (Author) |
Files: | PDF - Presentation file, download (169,47 KB) MD5: 4CB92897E9E4C55F72495E3D17EDA49E
URL - Source URL, visit https://www.ams.org/journals/bproc/2024-11-08/S2330-1511-2024-00212-9/
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | Let $X$ be a Stein manifold of dimension $n\ge 1$. Given a continuous positive increasing function $h$ on ${\mathbb R}_+ = [0,\infty)$ with $\lim_{t\to\infty} h(t)=\infty$, we construct a proper holomorphic embedding $f=(z,w):X \hookrightarrow {\mathbb C}^{n+1}\times {\mathbb C}^n$ satisfying $|w(x)|<h(|z(x)|)$ for all $x\in X$. In particular, $f$ may be chosen such that its limit set at infinity is a linearly embedded copy of $\mathbb{CP}^n$ in $\mathbb{CP}^{2n}$. |
---|
Keywords: | Stein manifold, proper holomorphic embedding |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.01.2024 |
---|
Year of publishing: | 2024 |
---|
Number of pages: | str. 77-83 |
---|
Numbering: | Vol. 11 |
---|
PID: | 20.500.12556/DiRROS-18916 |
---|
UDC: | 517.5 |
---|
ISSN on article: | 2330-1511 |
---|
DOI: | 10.1090/bproc/212 |
---|
COBISS.SI-ID: | 195187203 |
---|
Note: |
|
---|
Publication date in DiRROS: | 13.05.2024 |
---|
Views: | 393 |
---|
Downloads: | 291 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |