| Title: | Extremal edge general position sets in some graphs |
|---|
| Authors: | ID Tian, Jing (Author) ID Klavžar, Sandi (Author) ID Tan, Elif (Author) |
| Files: | PDF - Presentation file, download (304,95 KB) MD5: AB05096C233328B022052449CDA81563
URL - Source URL, visit https://link.springer.com/article/10.1007/s00373-024-02770-z
|
|---|
| Language: | English |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
|---|
| Abstract: | A set of edges $X\subseteq E(G)$ of a graph $G$ is an edge general position set if no three edges from $X$ lie on a common shortest path. The edge general position number ${\rm gp}_{\rm e}(G)$ of $G$ is the cardinality of a largest edge general position set in $G$. Graphs $G$ with ${\rm gp}_{\rm e}(G) = |E(G)| - 1$ and with ${\rm gp}_{\rm e}(G) = 3$ are respectively characterized. Sharp upper and lower bounds on ${\rm gp}_{\rm e}(G)$ are proved for block graphs $G$ and exact values are determined for several specific block graphs. |
|---|
| Keywords: | general position set, edge general position set, cut-vertex, diametral path, block graphs |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 01.04.2024 |
|---|
| Year of publishing: | 2024 |
|---|
| Number of pages: | 11 str. |
|---|
| Numbering: | Vol. 40, iss. 2, [article no.] 40 |
|---|
| PID: | 20.500.12556/DiRROS-18573  |
|---|
| UDC: | 519.17 |
|---|
| ISSN on article: | 0911-0119 |
|---|
| DOI: | 10.1007/s00373-024-02770-z  |
|---|
| COBISS.SI-ID: | 190484739  |
|---|
| Publication date in DiRROS: | 27.03.2024 |
|---|
| Views: | 1025 |
|---|
| Downloads: | 576 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |