Title: | Extremal edge general position sets in some graphs |
---|
Authors: | ID Tian, Jing (Author) ID Klavžar, Sandi (Author) ID Tan, Elif (Author) |
Files: | PDF - Presentation file, download (304,95 KB) MD5: AB05096C233328B022052449CDA81563
URL - Source URL, visit https://link.springer.com/article/10.1007/s00373-024-02770-z
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | A set of edges $X\subseteq E(G)$ of a graph $G$ is an edge general position set if no three edges from $X$ lie on a common shortest path. The edge general position number ${\rm gp}_{\rm e}(G)$ of $G$ is the cardinality of a largest edge general position set in $G$. Graphs $G$ with ${\rm gp}_{\rm e}(G) = |E(G)| - 1$ and with ${\rm gp}_{\rm e}(G) = 3$ are respectively characterized. Sharp upper and lower bounds on ${\rm gp}_{\rm e}(G)$ are proved for block graphs $G$ and exact values are determined for several specific block graphs. |
---|
Keywords: | general position set, edge general position set, cut-vertex, diametral path, block graphs |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.04.2024 |
---|
Year of publishing: | 2024 |
---|
Number of pages: | 11 str. |
---|
Numbering: | Vol. 40, iss. 2, [article no.] 40 |
---|
PID: | 20.500.12556/DiRROS-18573 |
---|
UDC: | 519.17 |
---|
ISSN on article: | 0911-0119 |
---|
DOI: | 10.1007/s00373-024-02770-z |
---|
COBISS.SI-ID: | 190484739 |
---|
Publication date in DiRROS: | 27.03.2024 |
---|
Views: | 448 |
---|
Downloads: | 247 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |