Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:Proper holomorphic maps in Euclidean spaces avoiding unbounded convex sets
Authors:ID Drinovec-Drnovšek, Barbara (Author)
ID Forstnerič, Franc (Author)
Files:URL URL - Source URL, visit https://link.springer.com/article/10.1007/s12220-023-01222-z
 
.pdf PDF - Presentation file, download (441,34 KB)
MD5: 255FCE81E4C9F637CDC77BA233B7BBD4
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:We show that if $E$ is a closed convex set in $\mathbb C^n$, $n>1$ contained in a closed halfspace $H$ such that ▫$E\cap bH$▫ is nonempty and bounded, then the concave domain $\Omega=\mathbb C^n\setminus E$ contains images of proper holomorphicmaps $f : X \to \mathbb C^n$ from any Stein manifold $X$ of dimension $< n$, with approximation of a givenmap on closed compact subsets of $X$. If in addition $2 {\rm dim} X+1 \le n$ then $f$ can be chosen an embedding, and if $2 {\rm dim} X = n$, then it can be chosen an immersion. Under a stronger condition on $E$, we also obtain the interpolation property for such maps on closed complex subvarieties.
Keywords:Stein manifolds, holomorphic embeddings, Oka manifold, minimal surfaces, convexity
Publication status:Published
Publication version:Version of Record
Publication date:01.06.2023
Year of publishing:2023
Number of pages:art. 170 (22 str.)
Numbering:Vol. 33, iss. 6
PID:20.500.12556/DiRROS-18406 New window
UDC:517.5
ISSN on article:1050-6926
DOI:10.1007/s12220-023-01222-z New window
COBISS.SI-ID:147026947 New window
Note:Spletna objava: 28. 3. 2023;
Publication date in DiRROS:15.03.2024
Views:441
Downloads:225
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:The Journal of geometric analysis
Shortened title:J. geom. anal.
Publisher:Springer, Mathematica Josephina
ISSN:1050-6926
COBISS.SI-ID:30685696 New window

Document is financed by a project

Funder:EC - European Commission
Funding programme:European Commission
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0291-2022
Name:Analiza in geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-3005-2021
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0237-2022
Name:Holomorfne parcialne diferencialne relacije

Funder:ARIS - Slovenian Research and Innovation Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0137-2020
Name:Nelinearni Valovi in Spektralna Teorija

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Steinove mnogoterosti, holomorfne vložitve, Oka mnogoterosti, minimalne ploskve, konveksnost


Back