Digital repository of Slovenian research organisations

Show document
A+ | A- | Help | SLO | ENG

Title:On the $p$-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity
Authors:ID Zhao, Min (Author)
ID Song, Yueqiang (Author)
ID Repovš, Dušan (Author)
Files:URL URL - Source URL, visit https://www.degruyter.com/document/doi/10.1515/dema-2023-0124/html
 
.pdf PDF - Presentation file, download (2,62 MB)
MD5: ED9AA72BAA996D5DD3C56EB7D21FD1F1
 
Language:English
Typology:1.01 - Original Scientific Article
Organization:Logo IMFM - Institute of Mathematics, Physics, and Mechanics
Abstract:In this article, we deal with the following $p$-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: $ M\left([u]_{s,A}^{p}\right)(-\Delta)_{p, A}^{s} u+V(x)|u|^{p-2} u=\lambda\left(\int_\limits{\mathbb{R}^{N}} \frac{|u|^{p_{\mu, s}^{*}}}{|x-y|^{\mu}} \mathrm{d}y\right)|u|^{p_{\mu, s}^{*}-2} u+k|u|^{q-2}u,\ x \in \mathbb{R}^{N},$ where $0 < s < 1 < p$, $ps < N$, $p < q < 2p^{*}_{s,\mu}$, $0 < \mu < N$, $\lambda$ and $k$ are some positive parameters, $p^{*}_{s,\mu}=\frac{pN-p\frac{\mu}{2}}{N-ps}$ is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions $V$, $M$ satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.
Keywords:Hardy-Littlewood-Sobolev nonlinearity, Schrödinger-Kirchhoff equations, variational methods, electromagnetic fields
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2024
Year of publishing:2024
Number of pages:18 str.
Numbering:Vol. 57, iss. 1, article no. 20230124
PID:20.500.12556/DiRROS-18199 New window
UDC:517.9
ISSN on article:2391-4661
DOI:10.1515/dema-2023-0124 New window
COBISS.SI-ID:180796163 New window
Note:
Publication date in DiRROS:16.02.2024
Views:542
Downloads:269
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Demonstratio Mathematica
Shortened title:Demonstr. Math.
Publisher:De Gruyter Poland
ISSN:2391-4661
COBISS.SI-ID:526342681 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0292-2022
Name:Topologija in njena uporaba

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0278-2023
Name:Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0114-2019
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0083-2018
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-4031-2022
Name:Računalniška knjižnica za zavozlane strukture in aplikacije

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-4001-2022
Name:Izbrani problemi iz uporabne in računske topologije

Funder:Other - Other funder or multiple funders
Funding programme:China, Jilin Province, Science and Technology Development Plan
Project number:20230101287JC

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Back