Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (environmental impacts) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Environmental and economic impacts of hydroxyapatite mineralized wood : LCA and LCC analysis
Matic Sitar, Manja Kitek Kuzman, Leon Oblak, Katarina Remic, 2024, original scientific article

Abstract: Wood is considered a promising raw material for the circular bioeconomy and has the ability to store biogenic carbon, and this is one reason why we want to extend the service life of the wood. In order to consider the influence of durability in our study, we used two wood species with different lifespans. Beech (Fagus sylvatica L.) belongs to the group of very sensitive wood species, as the durability of the untreated wood is estimated to be around 5 years; meanwhile, pine (Pinus sylvestris L.) belongs to the group of moderately resistant wood species, where the durability of the untreated wood is estimated to be up to 15 years. While toxic chemicals are often used for wood preservation, hydroxyapatite offers an environmentally friendly solution for wood mineralization. This study presents life cycle assessment (LCA) and life cycle cost (LCC) analyses comparing a novel hydroxyapatite (HAp) mineralization method with a service life of 50 years to a non-mineralized reference alternative. LCA was based on EN ISO 14040 and EN ISO 14044, while LCC was adapted from the European Commission’s LCC tool for public procurement. The results of the LCA show that mineralized wood has a lower overall impact on the environment than surface-treated beech wood but a higher impact than surface-treated pine wood. Most impact categories were determined by electricity consumption with the exception of stratospheric ozone depletion, water consumption, and land use. Water consumption proved to be the category where the mineralization process was problematic due to water consumption during the leaching process. The LCC showed that mineralized wood is the most cost-effective solution for the exterior façade, as all costs, but especially investment costs, were lower. The differences in the LCA and LCC results are mainly due to the different lifetimes of the two alternatives. It can be concluded that if energy-intensive processes and chemicals are used in the production of the material, the extended lifetime must be sufficient to account for the additional impacts that occur during the production phase.
Keywords: environmental impacts, hydroxyapatite, life cycle assessment (LCA), life cycle cost analysis (LCC), wood mineralization
Published in DiRROS: 09.09.2024; Views: 138; Downloads: 2518
.pdf Full text (2,60 MB)
This document has many files! More...

2.
New tools and recommendations for a better management of harmful algal blooms under the European Marine Strategy Framework Directive
Yolanda Sagarmínaga, Esther Garcés, Janja Francé, Rowena Stern, Marta Revilla, Erika Magaletti, Eileen Bresnan, George Tsirtsis, 2023, review article

Abstract: Marine harmful algal blooms (HABs), caused by various aquatic microalgae, pose significant risks to ecosystems, some socio-economic activities and human health. Traditionally managed as a public health issue through reactive control measures such as beach closures, seafood trade bans or closure of mollusc production areas, the multifaceted linkages of HABs with environmental and socio-economic factors require more comprehensive ecosystem-based management approach tools to support policies. This study promotes a coordinated understanding and implementation of HAB assessment and management under the Marine Strategy Framework Directive (MSFD), targeting the achievement of Good Environmental Status (GES) in European marine waters. We introduce two novel tools: GES4HABs (GES for HABs) decision tree, and MAMBO (environMental mAtrix for the Management of BlOoms), a decision support matrix. These tools aim to streamline HABs reporting and prioritize resource allocation and management interventions. The GES4HABs decision tree defines a sequence of decision steps to identify HAB management strategies according to their state (evaluated against predefined baselines) and causes (anthropic or natural). MAMBO is proposed to address different HABs and their interaction with human and environmental pressures. The matrix utilizes two axes: natural trophic status and level of human influence, capturing major aspects such as nutrient supply. While acknowledging the limitations of this simplified framework, MAMBO categorizes marine regions into quadrants of varying management viability. Regions with high human influence and eutrophic conditions are identified as most suitable for effective management intervention, whereas regions with minimal or mixed human influence are deemed less amenable to active management. In addition, we explore and describe various indicators, monitoring methods and initiatives that may be relevant to support assessments of HAB status and associated pressures and impacts in the MSFD reporting. Finally, we provide some recommendations to promote the consideration of HABs in ecosystem-based management strategies, intensify efforts for harmonizing and defining best practices of analysis, monitoring and assessment methodologies, and foster international and cross-sectoral coordination to optimize resources, efforts and roles.
Keywords: decision support tools, ecosystem-based management, indicators, marine monitoring, eutrophication, marine biotoxins, environmental assessment, pressures and impacts
Published in DiRROS: 05.08.2024; Views: 185; Downloads: 202
.pdf Full text (1,78 MB)
This document has many files! More...

3.
Pathway toward sustainable winter road maintenance (case study)
Katja Malovrh Rebec, Janez Turk, 2023, independent scientific component part or a chapter in a monograph

Abstract: Life Cycle Assessment (LCA) method was applied to evaluate the environmental impacts of winter road maintenance managed by an innovative road-weather information system and the impacts of vehicles passing the road during the snowstorm event. A case study refers to 10-hour lasting snowstorm event, considering a specific road section and application of a road-weather information management system to help winter road maintenance agency optimizing activities (salt gritting and/or plowing). Reliable information on the timing of the beginning of the snowstorm event affects (1) the activities of winter road maintenance, (2) the mobility of all vehicles passing the road, and (3) the fuel consumption of the vehicles. Since activities are optimized in case of preventive operation of winter road maintenance, less salt is needed overall. The road remains free of snow cover in case of preventive winter road maintenance operation, meaning that passenger cars and trucks pass the road at normal speed, without undesirable acceleration and braking caused by wheels slipping if snow accumulates on the road. Fuel consumption of vehicles passing salted and snow-free road remains unchanged, while fuel consumption increases in case of snow cover. Reduction of environmental burdens in case of such optimized winter road maintenance operation, is shown in this case study. The overall results of the comparative LCA analysis showed that the use of the road-weather information system in road traffic allows for as much as 25% reduction of environmental footprints. In the scenario where the winter service does not use information system the winter service also uses 40% more salt, which is also related with additional environmental impacts.
Keywords: LCA, okoljski odtisi, cesta, snežne razmere, preventivno delovanje, promet, poraba goriva, varnost, LCA, environmental impacts, road, snow cover, preventive operation, traffic, fuel consumption, safety
Published in DiRROS: 11.12.2023; Views: 397; Downloads: 255
.pdf Full text (19,01 MB)
This document has many files! More...

4.
Jet stream position explains regional anomalies in European beech forest productivity and tree growth
Isabel Dorado Liñán, Blanca Ayarzagüena, Flurin Babst, Guobao Xu, Luis Gil, Giovanna Battipaglia, Allan Buras, Vojtěch Čada, Jesús J. Camarero, Liam Cavin, Tom Levanič, Peter Prislan, 2022, original scientific article

Abstract: The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
Keywords: atmospheric dynamics, climate-change ecology, climate-change impacts, environmental impact
Published in DiRROS: 20.04.2022; Views: 1072; Downloads: 886
.pdf Full text (3,68 MB)
This document has many files! More...

Search done in 0.14 sec.
Back to top