Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (��trumbelj Tadeja) .

21 - 30 / 72
First pagePrevious page12345678Next pageLast page
21.
Monitoring the galvanic corrosion of copper–steel coupling in bentonite slurry during the early oxic phase using coupled multielectrode arrays
Tadeja Kosec, Miha Hren, Klara Prijatelj, Bojan Zajec, Nina Gartner, Andraž Legat, 2023, original scientific article

Abstract: In the case of a two-part container for spent nuclear fuel, consisting of an iron-based inner structure with a copper coating, the potential perforation of copper through minor damage may result in intensive galvanic corrosion between copper and steel. The present work focuses on the corrosion of steel galvanically coupled to copper and exposed to a slightly saline environment under oxic conditions. The electrochemical processes on individual electrodes were monitored by coupled multielectrode arrays (CMEAs). The CMEAs were either in contact with groundwater saturated with bentonite or immersed in groundwater only. Very high galvanic corrosion currents were detected between carbon steel and pure copper in the early oxic phase. Additionally, the use of CMEAs further made it possible to monitor the distribution of cathodic currents around the steel electrode, which behaved anodically. Various microscopy and spectroscopy techniques were applied to identify the modes of corrosion and the type of corrosion products present at the end of the period of exposure.
Keywords: copper, steel, bentonite, Aspö groundwater, coupled multi electrode array, electrochemical properties, Raman analysis, corrosion
Published in DiRROS: 16.11.2023; Views: 351; Downloads: 57
.pdf Full text (1,66 MB)
This document has many files! More...

22.
The corrosion resistance of dental Ti6Al4V with differing microstructures in oral environments
Mirjam Bajt Leban, Tadeja Kosec, Matjaž Finšgar, 2023, original scientific article

Abstract: The impact of the microstructural properties of a Ti6Al4V alloy on its electrochemical properties, as well as the effect of the α- and β-phases present within it, is still unclear. With the introduction of new, emerging technologies, such as selective laser melting and post heat treatments, the effect of the microstructure on an alloy's corrosion properties has become increasingly interesting from a scientific perspective. When these alloys are produced through different methods, despite an identical chemical composition they have diverse microstructures, and consequently display varying resistance to corrosion. In the present research study, Ti–6Al–4V alloy specimens produced by three different processes, leading to the formation of three different microstructures were investigated: heat treated specimen fabricated by selective laser melting, wrought and cast specimens. The impact of the microstructure of these alloys when immersed in artificial saliva was studied through the use of various electrochemical techniques, by microscopical examinations, and time-of-flight secondary ion mass spectrometry. Corrosion properties were investigated by the measurement of open circuit potential, linear polarization, and potentiodynamic curve measurements followed by microscopical examinations, and time-of-flight secondary ion mass spectrometry examination was conducted to reveal spatial distribution of alloying species on oxide film. It was found that the difference between specimens containing an α+β microstructure was small and not dependent on the aspect ratio of the β-phase, alloy grain size, and vanadium partitioning coefficient, but rather on the size, shape, and content of this phase.
Keywords: Ti6Al4V, dental alloy, microstructure, corrosion resistance, heat treatment, ToF-SIMS
Published in DiRROS: 26.10.2023; Views: 460; Downloads: 231
.pdf Full text (8,12 MB)
This document has many files! More...

23.
Influence of laser colour marking on the corrosion properties of low alloyed Ti
Tadeja Kosec, Andraž Legat, Janez Kovač, Damjan Klobčar, 2019, original scientific article

Abstract: In the field of surface treatment, laser colour marking can be used to produce coloured marks on the surfaces of metals. Laser colour markings can be applied to various materials, but on titanium alloys a wide spectra of vivid colours can be achieved. This study presents an analysis of the corrosion properties of laser treated surfaces that were exposed to aggressive environments. Different samples were prepared with laser light of various power intensities and processing speeds. The samples were prepared on low alloyed Ti. Electrochemical, spectroscopic and microstructural analyses were conducted in order to study the properties of the laser treated surfaces. Corrosion testing showed different effects of laser power and production speed on the properties of the laser treated surfaces. It was shown that a high intensity and slow processing rate affect the surfaces by forming oxides that are relatively stable in a corrosive environment of 0.1 M NaCl. Spectroscopic investigations including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses showed the differences in chemical structure of the surface layer formed after laser treatment. Similarly, microstructural investigations showed different effects on the surface and sub-surface layer of the laser treated samples.
Keywords: Ti alloy, laser treatment, XPS, corrosion
Published in DiRROS: 25.10.2023; Views: 371; Downloads: 149
.pdf Full text (3,16 MB)
This document has many files! More...

24.
Development of multi-component fluoropolymer based coating on simulated outdoor patina on quaternary bronze
Tadeja Kosec, Luka Škrlep, Erika Švara Fabjan, Andrijana Sever Škapin, Giulia Masi, Elena Bernardi, Cristina Chiavari, Claudie Josse, Jerome Esvan, Luc Robbiola, 2019, original scientific article

Abstract: Bronze reacts with oxygen, humidity, and pollutants in the atmosphere so that a patina forms. Natural exposure to an outdoor atmosphere can be simulated and accelerated in order to achieve a patina that mimics outdoor ancient patina. In order to avoid the uncontrolled dissolving of either the natural or artificially formed patina, protection of the patina is needed. In this study, a multi-component fluoropolymer based coating for the protection of bronze patina was developed. In order to provide various functionalities of the coating (such as the hydrophobicity of the coating surface, obtaining interactions within the coating itself as well as a bronze substrate and inhibiting the corrosion processes), a fluoroacrylate coating with appropriate adhesion promoter was suggested, with and without a silane modified benzotriazole inhibitor. The protective efficiency and durability of the applied coatings were investigated electrochemically using potentiodynamic tests and electrochemical impedance spectroscopy in a simulated acid rain solution. All of the developed coatings showed a significant decrease in the corrosion current density. The self-assembled single layer coating (FA-MS) also showed 100% inhibition efficiency. After ageing the coating remained transparent and did not change by UV exposure and/or thermal cycling. The patina and coating investigations using FIB-SEM and EDX showed that the latter coating (FA-MS) successfully covered the surface of the patinated bronze. The mechanism of the bonding was proposed and supported with the spectroscopic observation of a thin and even coating.
Keywords: bronze, patina, fluoropolymer coating, atmospheric corrosion
Published in DiRROS: 25.10.2023; Views: 354; Downloads: 189
.pdf Full text (2,17 MB)
This document has many files! More...

25.
Development of an electrical resistance sensor from high strength steel for automotive applications
Tadeja Kosec, Viljem Kuhar, Andrej Kranjc, Vili Malnarič, Branko Belingar, Andraž Legat, 2019, original scientific article

Abstract: This work focuses on a demonstration of the monitoring of corrosion processes taking place in high strength steel in automotive applications. This is performed by means of a corrosion sensor, which operates as an electrical resistance sensor. It was developed from the same type of material that is used for the high-strength steel parts produced in the automotive industry. Using the sensor, real time corrosion processes can be measured. It is attached to a location inside the vehicle’s engine and is equipped with a data logger, which enables wireless transfer of the measured data. In this study the development, operation, and evaluation of the monitoring process are presented. Corrosion estimation is verified by means of electrochemical methods. A metallographic investigation was included in order to verify the similarity between the microstructural properties of the sensor and those of the as-received high-strength steel sheet.
Keywords: high strenghth steel, automotive, electrical resistance sensor, corrosion
Published in DiRROS: 24.10.2023; Views: 432; Downloads: 157
.pdf Full text (2,33 MB)
This document has many files! More...

26.
Corrosion performance of steel in blended cement pore solutions
Miha Hren, Tadeja Kosec, Andraž Legat, Violeta Bokan-Bosiljkov, 2019, original scientific article

Abstract: Blended cements might change the chemistry of the pore solution and subsequently affect the corrosion of steel in concrete. Pore solutions were extracted, analyzed and compared from mortars made of CEM I, CEM II, CEM III and CEM IV cements. Three combinations of carbonation and chloride states were studied, i.e., non-carbonated without chlorides, non-carbonated with chlorides and carbonated with chlorides. Different electrochemical and spectroscopic techniques were used to study the electrochemical properties, the type and the extent of the corrosion products, as well as the type and the extent of the corrosion damage. It was confirmed that the most corrosive environments were pore solutions extracted from the carbonated mortars with chlorides. In this environment the highest corrosion rate was observed for the CEM III pore solution, and the lowest for the CEM I. The extent and the type of corrosion products and the corrosion damage varied according to the environment.
Keywords: corrosion, blended cements, pore solution, mortar
Published in DiRROS: 14.09.2023; Views: 294; Downloads: 111
.pdf Full text (1,80 MB)
This document has many files! More...

27.
Depassivation and repassivation of stainless steels by stepwise pH change
Emir Mujanović, Bojan Zajec, Andraž Legat, Tadeja Kosec, Janez Kovač, Gregor Mori, Stefan Hönig, Gerald Zehethofer, 2020, original scientific article

Abstract: Immersion tests with different stainless steels have been performed, while the pH was stepwise decreased and then increased again. During 8.5-day exposure, the depassivation and repassivation pH values as a function of pitting resistance equivalent number were determined. There is always a gap between both pH values (depassivation and repassivation), indicating that for every steel, there are conditions where an existing passive layer can be maintained but cannot be rebuilt after depassivation. In such environments, the passive layer is thicker, consisting mainly of molybdenum and iron rich oxides, while chromium is dissolved. Usually, depending on conditions, the passive layer is more chromium-rich, especially the inner layer. This is relevant, for example, for acidizing jobs in oil and gas industry, proving that repassivation after acidizing will happen promptly, when the pH is increased again.
Keywords: stress corrosion cracking, surface finish impact, tapered tensile specimen, autoclave, accelerated testing, light water nuclear reactor, critical threshold stress
Published in DiRROS: 30.08.2023; Views: 300; Downloads: 156
.pdf Full text (4,01 MB)
This document has many files! More...

28.
Tribocorrosive study of new and in vivo exposed nickel titanium and stainless steel orthodontic archwires
Tadeja Kosec, Petra Močnik, Uroš Mezeg, Andraž Legat, Maja Ovsenik, Monika Jenko, John T. Grant, Jasmina Primožič, 2020, original scientific article

Abstract: The surface, corrosion and wear properties of new and in vivo exposed nickel titanium (NiTi) and stainless steel (SS) archwires used in orthodontic treatment were investigated. Electrochemical and tribo-electrochemical tests in artificial saliva were performed in order to define corrosion properties and to estimate wear rate of new and in vivo exposed NiTi and SS archwires. The surface chemical analysis of the passive film on the NiTi and SS archwires before and after tribocorrosion tests was performed by Auger Electron Spectroscopy (AES). In vivo exposed NiTi and SS archwires had better electrochemical properties than new archwires due to the protective nature of oral deposits. Total wear and coefficients of friction were higher among in vivo exposed archwires and higher in NiTi archwires in comparison to SS archwires. The estimated thickness of the TiO2 passive film on as-received NiTi is 8 nm, while the passive Cr2O3 film on as-received SS is just 1–2 nm. On in vivo exposed NiTi archwire, a 60–80 nm thick organic film/dental plaque was observed, and on SS, it was thinner, at about 60 nm. This research shows the importance of combining AES with electrochemical testing, to characterize tribocorrosive properties of NiTi and SS orthodontic archwires.
Keywords: archwires, NiTi, stainless steel, wear
Published in DiRROS: 24.08.2023; Views: 265; Downloads: 114
.pdf Full text (2,18 MB)
This document has many files! More...

29.
Corrosion behavior of steel in pore solutions extracted from different blended cements
Miha Hren, Tadeja Kosec, Andraž Legat, 2020, original scientific article

Abstract: Mortar specimens made from four different types of cement, CEM I, CEM II, CEM III, and CEM IV, were prepared and pore solutions extracted. Three different types of exposure were studied: noncarbonated without chlorides, noncarbonated with chlorides, and carbonated with chlorides. Various electrochemical methods (linear polarization, potentiodynamic polarization measurements) were implemented to characterize the processes of corrosion on steel in these solutions. The type and extent of corrosion products were evaluated by means of various spectroscopic techniques. Specific differences in the type and extent of corrosion damage were determined and compared for each of the extracted pore solutions from the different blended cements. An attempt was made to classify these differences in comparison with the reference cement (CEM I) and in relation to the different types of exposure.
Keywords: corrosion, steel in pore water, blended cements, Raman Spectroscopy
Published in DiRROS: 22.08.2023; Views: 274; Downloads: 130
.pdf Full text (1,25 MB)
This document has many files! More...

30.
Monitoring the corrosion of steel in concrete exposed to a marine environment
Nina Gartner, Tadeja Kosec, Andraž Legat, 2020, original scientific article

Abstract: Reinforced concrete structures require continuous monitoring and maintenance to prevent corrosion of the carbon steel reinforcement. In this work, concrete columns with carbon and stainless steel reinforcements were exposed to a real marine environment. In order to monitor the corrosion processes, two types of corrosion probes were embedded in these columns at different height levels. The results from the monitoring of the probes were compared to the actual corrosion damage in the different exposure zones. Electrical resistance (ER) probes and coupled multi-electrodes (CMEs) were shown to be promising methods for long-term corrosion monitoring in concrete. Correlations between the different exposure zones and the corrosion processes of the steel in the concrete were found. Macrocell corrosion properties and the distribution of the separated anodic/cathodic places on the steel in chloride-contaminated concrete were addressed as two of the key issues for understanding the corrosion mechanisms in such environments. The specific advantages and limitations of the tested measuring techniques for long-term corrosion monitoring were also indicated. The results of the measurements and the corrosion damage evaluation clearly confirmed that the tested stainless steels (AISI 304 and AISI 304L) in a chloride-contaminated environment behave significantly better than ordinary carbon steel, with corrosion rates from 110% to 9500% lower in the most severe (tidal) exposure conditions.
Keywords: corrosion in concrete, steel reinforcement, long-term exposure, field exposure, electrical resistance (ER) probes, coupled multi-electrodes
Published in DiRROS: 21.08.2023; Views: 249; Downloads: 157
.pdf Full text (4,42 MB)
This document has many files! More...

Search done in 0.18 sec.
Back to top