Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (��i��man-��agar Polona) .

1 - 10 / 134
First pagePrevious page12345678910Next pageLast page
1.
2.
Extremophilic microorganisms in Central Europe
Vera Zgonik, Janez Mulec, Tina Eleršek, Nives Ogrinc, Polona Jamnik, Nataša Poklar Ulrih, 2021, review article

Abstract: Extremophiles inhabit a wide variety of environments. Here we focus on extremophiles in moderate climates in central Europe, and particularly in Slovenia. Although multiple types of stress often occur in the same habitat, extremophiles are generally combined into groups according to the main stressor to which they are adapted. Several types of extremophiles, e.g., oligotrophs, are well represented and diverse in subsurface environments and karst regions. Psychrophiles thrive in ice caves and depressions with eternal snow and ice, with several globally distributed snow algae and psychrophilic bacteria that have been discovered in alpine glaciers. However, this area requires further research. Halophiles thrive in salterns while thermophiles inhabit thermal springs, although there is little data on such microorganisms in central Europe, despite many taxa being found globally. This review also includes the potential use of extremophiles in biotechnology and bioremediation applications.
Keywords: ekstremofilni mikroorganizmi, mikrobna ekologija, ekstremofili, oligotrofi, psihrofili, halofili, termofili
Published in DiRROS: 05.08.2024; Views: 199; Downloads: 186
.pdf Full text (4,24 MB)
This document has many files! More...

3.
Molecular screening for cyanobacteria and their cyanotoxin potential in diverse habitats
Maša Jablonska, Tina Eleršek, Polona Kogovšek, Sara Skok, Andreea Oarga-Mulec, Janez Mulec, 2024, original scientific article

Abstract: Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and niches remain underexplored. We collected 61 samples of: (i) biofilms from springs, (ii) aerial microbial mats from buildings and subaerial mats from caves, and (iii) water from borehole wells, caves, alkaline, saline, sulphidic, thermal, and iron springs, rivers, seas, and melted cave ice from five countries (Croatia, Georgia, Italy, Serbia, and Slovenia). We used (q)PCR to detect cyanobacteria (phycocyanin intergenic spacer—PC-IGS and cyanobacteria-specific 16S rRNA gene) and cyanotoxin genes (microcystins—mcyE, saxitoxins—sxtA, cylindrospermopsins—cyrJ), as well as amplicon sequencing and morphological observations for taxonomic identification. Cyanobacteria were detected in samples from caves, a saline spring, and an alkaline spring. While mcyE or sxtA genes were not observed in any sample, cyrJ results showed the presence of a potential cylindrospermopsin producer in a biofilm from a sulphidic spring in Slovenia. This study contributes to our understanding of cyanobacteria occurrence in diverse habitats, including rare and extreme ones, and provides relevant methodological considerations for future research in such environments.
Keywords: extreme environments, cylindrospermopsin, sulphidic springs, caves, qPCR, PC-IGS
Published in DiRROS: 05.08.2024; Views: 208; Downloads: 140
.pdf Full text (1,09 MB)
This document has many files! More...

4.
5.
SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea
Benjamin Kirm, Vasilka Magdevska, Miha Tome, Marinka Horvat, Katarina Karničar, Marko Petek, Robert Vidmar, Špela Baebler, Polona Jamnik, Štefan Fujs, Jaka Horvat, Marko Fonović, Boris Turk, Kristina Gruden, Hrvoje Petković, Gregor Kosec, 2013, original scientific article

Abstract: Background Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. Results We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. Conclusions SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.
Keywords: erythromycin, polyketide, regulator, SACE_5599, lmbU, differentiation (biology), sporulation, strain improvement, metabolic engineering
Published in DiRROS: 02.08.2024; Views: 184; Downloads: 200
.pdf Full text (1,18 MB)
This document has many files! More...

6.
Potato Virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack
Marko Petek, Ana Rotter, Polona Kogovšek, Špela Baebler, Axel Mithöfer, Kristina Gruden, 2014, original scientific article

Abstract: In the field, plants are challenged by more than one biotic stressor at the same time. In this study, the molecular interactions between potato (Solanum tuberosum L.), Colorado potato beetle (Leptinotarsa decemlineata Say; CPB) and Potato virus YNTN (PVYNTN) were investigated through analyses of gene expression in the potato leaves and the gut of the CPB larvae, and of the release of potato volatile compounds. CPB larval growth was enhanced when reared on secondary PVYNTN-infected plants, which was linked to decreased accumulation of transcripts associated with the antinutritional properties of potato. In PVYNTN-infected plants, ethylene signalling pathway induction and induction of auxin response transcription factors were attenuated, while no differences were observed in jasmonic acid (JA) signalling pathway. Similarly to rearing on virus-infected plants, CPB larvae gained more weight when reared on plants silenced in JA receptor gene (coi1). Although herbivore-induced defence mechanism is regulated predominantly by JA, response in coi1-silenced plants only partially corresponded to the one observed in PVYNTN-infected plants, confirming the role of other plant hormones in modulating this response. The release of β-barbatene and benzyl alcohol was different in healthy and PVYNTN-infected plants before CPB larvae infestation, implicating the importance of PVYNTN infection in plant communication with its environment. This was reflected in gene expression profiles of neighbouring plants showing different degree of defence response. This study thus contributes to our understanding of plant responses in agro-ecosystems.
Keywords: insect midgut transcriptional response, gene expression, plant defence, volatile organic compounds, potato
Published in DiRROS: 02.08.2024; Views: 193; Downloads: 131
.pdf Full text (959,76 KB)
This document has many files! More...

7.
Involvement of potato (Solanum tuberosum L.) MKK6 in response to Potato virus Y
Ana Lazar, Anna Coll Rius, David Dobnik, Špela Baebler, Apolonija Bedina Zavec, Jana Žel, Kristina Gruden, 2014, original scientific article

Abstract: Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant%pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.
Keywords: plant diseases, potato, molecular biology
Published in DiRROS: 02.08.2024; Views: 183; Downloads: 186
.pdf Full text (6,72 MB)
This document has many files! More...

8.
LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine
Polona Kogovšek, Jennifer Hodgetts, J. Hall, Nina Prezelj, Petra Nikolić, Nataša Mehle, Rok Lenarčič, Ana Rotter, M. Dickinson, Neil Boonham, Marina Dermastia, Maja Ravnikar, 2015, original scientific article

Abstract: In Europe the most devastating phytoplasma associated with grapevine yellows (GY) diseases is a quarantine pest, flavescence dorée (FDp), from the 16SrV taxonomic group. The on-site detection of FDp with an affordable device would contribute to faster and more efficient decisions on the control measures for FDp. Therefore, a real-time isothermal LAMP assay for detection of FDp was validated according to the EPPO standards and MIQE guidelines. The LAMP assay was shown to be specific and extremely sensitive, because it detected FDp in all leaf samples that were determined to be FDp infected using quantitative real-time PCR. The whole procedure of sample preparation and testing was designed and optimized for on-site detection and can be completed in one hour. The homogenization procedure of the grapevine samples (leaf vein, flower or berry) was optimized to allow direct testing of crude homogenates with the LAMP assay, without the need for DNA extraction, and was shown to be extremely sensitive.
Keywords: flavescence dorée, homogenization, loop-mediated isothermal amplification, on-site application, validation
Published in DiRROS: 26.07.2024; Views: 244; Downloads: 215
.pdf Full text (483,90 KB)
This document has many files! More...

9.
10.
Search done in 0.35 sec.
Back to top