Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (tunnel) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Real-time monitoring and analyses of sensory data integrated into the bim platform
Stanislav Lenart, Veljko Janjić, Uros Jovanovic, Rok Vezočnik, 2021, published scientific conference contribution

Abstract: Bridges and tunnels, crucial elements of the railway infrastructure, are exposed to various types of deterioration processes. Their condition is a subject of monitoring, as it is important to collect as much as possible information in every life cycle phase to reliably predict their future performance. An enormous quantity of monitoring data is generated during the whole life cycle of these assets. EU funded Shift2Rail research project Assets4Rail which is focusing on measuring, monitoring, and data handling for railway assets, as data management is as important as their generation. This paper presents the major outcomes of the Assets4Rail project and its application to infrastructure projects.
Keywords: monitoring, information management, BIM, information management, bridge, tunnel, Assets4Rail
Published in DiRROS: 23.02.2024; Views: 169; Downloads: 96
.pdf Full text (553,89 KB)
This document has many files! More...

2.
Experimental and numerical investigation of restrained shrinkage of concrete
Lucija Hanžič, Jurij Karlovšek, Tomaž Hozjan, Sabina Huč, Zhongyu Xu, Igor Planinc, Johnny Ching Ming Ho, 2020, published scientific conference contribution

Abstract: To promote the understanding of shrinkage related behaviour of concrete used for tunnel linings the experimental and theoretical investigation including numerical and analytical approach was performed on ring-shaped specimens. Overall one analytical (an.) and two numerical models, namely (i) and (ii) were also developed. Models (an.) and (i) considered the restraining steel ring to be rigid, thus not exhibiting any deformation. Numerical model (ii) considered the steel ring to be deformable. The experimental set-up consisted of a large concrete ring with an inner diameter of 120 cm, an outer diameter of 160cm and 20 cm in height. The restraining steel ring was 5.5 cm thick. Two concrete rings were made, namely R1 with a low compressive strength of ~26MPa and the other, R2, with medium compressive strength of ~40 MPa. The strain was measured in the hoop direction on the inner circumference of the steel ring and on the outer circumference of the concrete ring. Concrete rings were subjected to circumferential drying. Numerical model (ii) predicted critical time to the formation of the first crack to be between 13 and 14 days. The experimentally determined critical time is found to be 11 to 13 days with cracks gradually opening over several days. This was indicated by changes in measured concrete and steel strain. Modelled concrete strain just before cracking was between -20 and -30 % 10-6 m m-1 however, measured concrete strain was ~150 % 10-6 m m-1. Modelled steel strain was between -30 and -40 % 10-6 m m-1 while measured steel strain was between -10 and 20 % 10-6 m m-1. These discrepancies, in particular the positive steel strain obtained in experiments, require further investigation and improvements of the experimental set-up.
Keywords: concrete, tunnel lining, restrained shrinkage, Reissner beam theory, modelling
Published in DiRROS: 19.01.2024; Views: 193; Downloads: 82
.pdf Full text (18,89 MB)
This document has many files! More...

3.
Overview of the thermal properties of rocks and sediments in Slovenia
Dušan Rajver, Simona Adrinek, 2023, review article

Abstract: The use of geothermal energy, which comes from both deep geothermal systems and the shallow underground, has been developing rapidly in the last few decades. The purpose of the paper is to present the results of measurements of the thermal properties of all rock samples and sediments that were available from boreholes, two tunnels and numerous surface locations in Slovenia in the period from 1982 to the end of 2022. In relation to the shallow geothermal potential, a special effort is needed to characterize the thermal properties of the rocks and sediments and to implement thermal energy transfer technology. In this sense, knowledge of the thermal conductivity of rocks and sediments is required to assess the possibility of low-enthalpy heat exchange in a given local area. The largest number of measurements was taken to determine thermal conductivity. Determinations of thermal diffusivity were carried out on a much smaller number of rock and sediment samples, as well as determinations of radiogenic heat production in rocks. The results of thermal conductivity measurements on 430 samples from 119 wells, 20 samples from two tunnels and 156 samples from surface locations are shown. The highest thermal conductivities are shown by samples of dolomite, quartz conglomerate and conglomerate, phyllonite, quartz phyllite and gneiss, while the lowest are measured in sediments such as clay, lignite with clay, peat and dry sand. The determined radioactive heat generation is the lowest for milonitized dolomite and highest for dark grey sandstone with shale clasts. Our results are comparable to those already published worldwide, and they could be the basis for the possible future Slovenian standard for the thermal properties of measured rocks and sediments.
Keywords: thermal conductivity, thermal diffusivity, borehole, tunnel, surface, rock, sediment, radioactive heat generation, Slovenia
Published in DiRROS: 15.01.2024; Views: 173; Downloads: 90
.pdf Full text (6,03 MB)
This document has many files! More...

Search done in 0.08 sec.
Back to top