Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (steel) .

31 - 40 / 58
First pagePrevious page123456Next pageLast page
31.
Getting more out of existing structures
Martín-Sanz Henar, Konstantinos Tatsis, Domagoj Damjanovic, Irina Stipanović, Aljoša Šajna, Ivan Duvnjak, Uroš Bohinc, Eugen Brühwiler, Eleni Chatzi, 2019, original scientific article

Abstract: Ultra-high-performance fiber-reinforced cement-based composite (UHPFRC) has been increasingly adopted for rehabilitation projects over the past two decades, proving itself as a reliable, cost-efficient and sustainable alternative against conventional methods. High compressive strength, low permeability and high ductility are some of the characteristics that render UHPFRC an excellent material for repairing existing aged infrastructure. UHPFRC is most commonly applied as a surface layer for strengthening and rehabilitating concrete structures such as bridge decks or building slabs. However, its implementation with steel structures has so far been limited. In this work, the UHPFRC strengthening of a steel bridge is investigated both in simulation as well as in the laboratory, by exploiting a real-world case study: the Buna Bridge. This Croatian riveted steel bridge, constructed in 1893, repaired in 1953, and decommissioned since 2010, was removed from its original location and transported to laboratory facilities for testing prior to and after rehabilitation via addition of UHPFRC slab. The testing campaign includes static and dynamic experiments featuring state-of-the-art monitoring systems such as embedded fiber optics, acoustic emission sensors and digital image correlation. The information obtained prior to rehabilitation serves for characterization of the actual condition of the structure and allows the design of the rehabilitation solution. The UHPFRC slab thickness was optimized to deliver optimal fatigue and ultimate capacity improvement at reasonable cost. Once the design was implemented, a second round of experiments was conducted in order to confirm the validity of the solution, with particular attention allocated to the interface between the steel substrate and the UHPFRC overlay, as the connection between both materials may result in a weak contact point. A detailed fatigue analysis, based on updated FEM models prior to and after strengthening, combined with the results of a reliability analysis prove the benefits of adoption of such a solution via the significant extension of the structural lifespan.
Keywords: bridge, steel, UHPFRC, structures
Published in DiRROS: 21.12.2023; Views: 198; Downloads: 79
.pdf Full text (10,84 MB)
This document has many files! More...

32.
Corrosion monitoring of steel structure coating degradation
Bojan Zajec, Mirjam Bajt Leban, Tadeja Kosec, Viljem Kuhar, Andraž Legat, Stanislav Lenart, Karmen Fifer Bizjak, Gavin Kenneth, 2018, original scientific article

Abstract: An important aspect regarding the sustainability of steel structures is to ensure the structure is protected from corrosion. A number of surface coatings are availablethat play an important role in protecting these structures. An important part of the management of these structures is reliable and regular inspection along with methods forearly detection of corrosion processes. In this paper, a development and application of sensors for monitoring the steel coating degradation and corrosion damage to steelsubstrate are presented. An encapsulated corrosion kit with integrated EIS sensors and ER probes was developed. To test its efficiency, steel probes were coated withselected coatings in the laboratory and their performance was assessed under various aggressive atmospheres, including; salt, industrial and humid atmosphere.
Keywords: coatings, corrosion, electrochemical impedance spectroscopy, electrical resistance probes, railways, steel structures
Published in DiRROS: 13.12.2023; Views: 184; Downloads: 96
.pdf Full text (2,45 MB)
This document has many files! More...

33.
Elucidating nucleation stages of transgranular stress corrosion cracking in austenitic stainless steel by in situ electrochemical and optical methods
Sarmiento Klapper Helmuth, Bojan Zajec, Andreas Heyn, Andraž Legat, 2019, original scientific article

Abstract: The pitting and environmentally assisted cracking resistance of austenitic stainless steels (SS) is challenged in several industrial applications particularly those involving hot chloride-concentrated streams. Directional drilling used in the oil and gas exploration is one of these applications. Indeed, high strength CrMn-SS commonly used in drilling technology have a high tendency to fail by stress corrosion cracking (SCC) preceded by localized corrosion once subjected to highly chloride-concentrated drilling fluids at elevated temperatures. A comprehensive understanding regarding the mechanisms governing the transition from pitting into SCCis not currently available, though. Therefore, mechanistic aspects such as the effect of loading conditions on pit nucleation and repassivation as well as the synergistic effect between pit stabilization and the nucleation of a stress corrosion crack are of great practical significance. To investigate this an electrochemical-, optical- and mechanical- monitored SCC test was conducted on a CrMn-SS in an alkaline brine at elevated temperature. The transition from metastable to stable pitting and subsequently to SCC in this system was documented in-situ for the first time. Results supported H.S. Isaacs postulates regarding the interpretation of electrochemical signals and demonstrated that loading conditions affect pit nucleation and repassivation leading to a higher susceptibility of the material to pitting, which preceded SCC.
Keywords: pitting corrosion, stress corrosion cracking, monitoring, elektrochemical noise, austenitic stainless steel
Published in DiRROS: 23.11.2023; Views: 215; Downloads: 175
.pdf Full text (2,28 MB)
This document has many files! More...

34.
Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM
Katja Traven, Mark Češnovar, Vilma Ducman, 2019, original scientific article

Abstract: Alkali-activated materials (AAM) have gained recognition as a promising alternative to technical ceramic and building materials owing to the lower energy demands for production and the potential to use slag as a precursor. In the present study, five sets of slag-based AAM pastes were prepared with different particle sizes (fractions d < 63, 63 < d < 90, and 90 < d < 125 μm in different mass ratios) under the same curing regime and using a fixed precursor to activator (water) mass ratio. Precursors and the hardened AAM are evaluated using BET, XRD, XRF, SEM, FTIR, reactivity of precursors by leaching, and mercury intrusion porosimetry (MIP). Chemical analysis indicated only marginal differences among the different-sized fractions of input materials, whereas the BET surface area and reactivity among the precursors differed significantly-smaller particles had the largest surface area, and thus, higher reactivity. The mineralogical differences between the precursors and hardened AAM were negligible. The results revealed that compressive strength was significantly influenced by particle size, i.e., a threefold increase in strength when the particle size was halved. Microstructural evaluation using MIP confirmed that the porosity was the lowest in AAM with the smallest particle size. The low porosity and high reactivity of the fine fractions led to the highest compressive strength, confirming that manipulation of particle size can significantly influence the mechanical properties.
Keywords: alkalijsko aktivirani materiali, žlindra iz obločne peči, mehanska aktivacija, mehanske lastnosti, poroznost, alkali-activated materials (AAM), electric arc furnace steel slag, mechanical activation, mechanical properties, porosity
Published in DiRROS: 22.11.2023; Views: 253; Downloads: 132
.pdf Full text (2,26 MB)
This document has many files! More...

35.
Corrosion properties of aluminized 16Mo3 steel
Blaž Karpe, Klara Prijatelj, Milan Bizjak, Tadeja Kosec, 2023, original scientific article

Abstract: Chromium-molybdenum steel (16Mo3) is widely used in petroleum, gas, automotive, and construction industries due to its good oxidation resistance and mechanical properties at moderately elevated temperatures. The aim of the research was to evaluate the corrosion susceptibility of 16Mo3 steel in hot rolled and aluminized states. Aluminization was performed by diffusion pack aluminization process at 900°C/2h and 730°C/4h, respectively. Electrochemical corrosion testing included measuring open circuit potential (EOCP), linear polarization resistance (LPR), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in potassium phosphate buffer (KH2PO4, pH = 7). Optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used for surface layer microstructure characterization before and after corrosion tests. It was demonstrated that corrosion resistance of aluminized steel increased substantially. Corrosion properties were related to the structure and properties of intermetallic phase (FeAl, FeAl2 and Fe2Al5) that formed on the surface of 16Mo3 steel.
Keywords: aluminide coatings, aluminized steel, aluminizing, electrochemical corrosion investigation, 16Mo3 steel
Published in DiRROS: 16.11.2023; Views: 324; Downloads: 171
.pdf Full text (4,40 MB)
This document has many files! More...

36.
Monitoring the galvanic corrosion of copper–steel coupling in bentonite slurry during the early oxic phase using coupled multielectrode arrays
Tadeja Kosec, Miha Hren, Klara Prijatelj, Bojan Zajec, Nina Gartner, Andraž Legat, 2023, original scientific article

Abstract: In the case of a two-part container for spent nuclear fuel, consisting of an iron-based inner structure with a copper coating, the potential perforation of copper through minor damage may result in intensive galvanic corrosion between copper and steel. The present work focuses on the corrosion of steel galvanically coupled to copper and exposed to a slightly saline environment under oxic conditions. The electrochemical processes on individual electrodes were monitored by coupled multielectrode arrays (CMEAs). The CMEAs were either in contact with groundwater saturated with bentonite or immersed in groundwater only. Very high galvanic corrosion currents were detected between carbon steel and pure copper in the early oxic phase. Additionally, the use of CMEAs further made it possible to monitor the distribution of cathodic currents around the steel electrode, which behaved anodically. Various microscopy and spectroscopy techniques were applied to identify the modes of corrosion and the type of corrosion products present at the end of the period of exposure.
Keywords: copper, steel, bentonite, Aspö groundwater, coupled multi electrode array, electrochemical properties, Raman analysis, corrosion
Published in DiRROS: 16.11.2023; Views: 337; Downloads: 55
.pdf Full text (1,66 MB)
This document has many files! More...

37.
Development of an electrical resistance sensor from high strength steel for automotive applications
Tadeja Kosec, Viljem Kuhar, Andrej Kranjc, Vili Malnarič, Branko Belingar, Andraž Legat, 2019, original scientific article

Abstract: This work focuses on a demonstration of the monitoring of corrosion processes taking place in high strength steel in automotive applications. This is performed by means of a corrosion sensor, which operates as an electrical resistance sensor. It was developed from the same type of material that is used for the high-strength steel parts produced in the automotive industry. Using the sensor, real time corrosion processes can be measured. It is attached to a location inside the vehicle’s engine and is equipped with a data logger, which enables wireless transfer of the measured data. In this study the development, operation, and evaluation of the monitoring process are presented. Corrosion estimation is verified by means of electrochemical methods. A metallographic investigation was included in order to verify the similarity between the microstructural properties of the sensor and those of the as-received high-strength steel sheet.
Keywords: high strenghth steel, automotive, electrical resistance sensor, corrosion
Published in DiRROS: 24.10.2023; Views: 427; Downloads: 153
.pdf Full text (2,33 MB)
This document has many files! More...

38.
Tribocorrosive study of new and in vivo exposed nickel titanium and stainless steel orthodontic archwires
Tadeja Kosec, Petra Močnik, Uroš Mezeg, Andraž Legat, Maja Ovsenik, Monika Jenko, John T. Grant, Jasmina Primožič, 2020, original scientific article

Abstract: The surface, corrosion and wear properties of new and in vivo exposed nickel titanium (NiTi) and stainless steel (SS) archwires used in orthodontic treatment were investigated. Electrochemical and tribo-electrochemical tests in artificial saliva were performed in order to define corrosion properties and to estimate wear rate of new and in vivo exposed NiTi and SS archwires. The surface chemical analysis of the passive film on the NiTi and SS archwires before and after tribocorrosion tests was performed by Auger Electron Spectroscopy (AES). In vivo exposed NiTi and SS archwires had better electrochemical properties than new archwires due to the protective nature of oral deposits. Total wear and coefficients of friction were higher among in vivo exposed archwires and higher in NiTi archwires in comparison to SS archwires. The estimated thickness of the TiO2 passive film on as-received NiTi is 8 nm, while the passive Cr2O3 film on as-received SS is just 1–2 nm. On in vivo exposed NiTi archwire, a 60–80 nm thick organic film/dental plaque was observed, and on SS, it was thinner, at about 60 nm. This research shows the importance of combining AES with electrochemical testing, to characterize tribocorrosive properties of NiTi and SS orthodontic archwires.
Keywords: archwires, NiTi, stainless steel, wear
Published in DiRROS: 24.08.2023; Views: 265; Downloads: 114
.pdf Full text (2,18 MB)
This document has many files! More...

39.
Corrosion behavior of steel in pore solutions extracted from different blended cements
Miha Hren, Tadeja Kosec, Andraž Legat, 2020, original scientific article

Abstract: Mortar specimens made from four different types of cement, CEM I, CEM II, CEM III, and CEM IV, were prepared and pore solutions extracted. Three different types of exposure were studied: noncarbonated without chlorides, noncarbonated with chlorides, and carbonated with chlorides. Various electrochemical methods (linear polarization, potentiodynamic polarization measurements) were implemented to characterize the processes of corrosion on steel in these solutions. The type and extent of corrosion products were evaluated by means of various spectroscopic techniques. Specific differences in the type and extent of corrosion damage were determined and compared for each of the extracted pore solutions from the different blended cements. An attempt was made to classify these differences in comparison with the reference cement (CEM I) and in relation to the different types of exposure.
Keywords: corrosion, steel in pore water, blended cements, Raman Spectroscopy
Published in DiRROS: 22.08.2023; Views: 270; Downloads: 126
.pdf Full text (1,25 MB)
This document has many files! More...

40.
Monitoring the corrosion of steel in concrete exposed to a marine environment
Nina Gartner, Tadeja Kosec, Andraž Legat, 2020, original scientific article

Abstract: Reinforced concrete structures require continuous monitoring and maintenance to prevent corrosion of the carbon steel reinforcement. In this work, concrete columns with carbon and stainless steel reinforcements were exposed to a real marine environment. In order to monitor the corrosion processes, two types of corrosion probes were embedded in these columns at different height levels. The results from the monitoring of the probes were compared to the actual corrosion damage in the different exposure zones. Electrical resistance (ER) probes and coupled multi-electrodes (CMEs) were shown to be promising methods for long-term corrosion monitoring in concrete. Correlations between the different exposure zones and the corrosion processes of the steel in the concrete were found. Macrocell corrosion properties and the distribution of the separated anodic/cathodic places on the steel in chloride-contaminated concrete were addressed as two of the key issues for understanding the corrosion mechanisms in such environments. The specific advantages and limitations of the tested measuring techniques for long-term corrosion monitoring were also indicated. The results of the measurements and the corrosion damage evaluation clearly confirmed that the tested stainless steels (AISI 304 and AISI 304L) in a chloride-contaminated environment behave significantly better than ordinary carbon steel, with corrosion rates from 110% to 9500% lower in the most severe (tidal) exposure conditions.
Keywords: corrosion in concrete, steel reinforcement, long-term exposure, field exposure, electrical resistance (ER) probes, coupled multi-electrodes
Published in DiRROS: 21.08.2023; Views: 244; Downloads: 154
.pdf Full text (4,42 MB)
This document has many files! More...

Search done in 0.4 sec.
Back to top