1. Comprehensive benchmarking of knowledge graph embeddings methods for Android malware detectionJan Kincl, Tome Eftimov, Adam Viktorin, Roman Senkerik, Tanja Pavleska, 2025, original scientific article Abstract: The rising popularity and open-source model of the Android operating system has made it a main target for attackers creating malware applications. With the mobile industry being an expanding device ecosystem, there is a critical need for developing effective methods to protect against mobile malware. Recognizing the latest approaches and their limitations, we have conducted a comprehensive empirical analysis on the applicability of knowledge graphs for malware detection in view of the influence of the scoring functions, the vector dimension, the stability of the obtained results, the performance of the individual classifiers, and other important time dependencies. In addition, we propose a knowledge-graph based method aimed at improving the quality of classification input data, while offering greater interfacing capabilities with external knowledge and lower computational complexity. The proposed method offers a new perspective on working with Android malware, demonstrating a unique data processing pipeline for malware sample identification and encouraging further innovation in the field. Our findings demonstrate that knowledge graph representation is not only feasible, but also provides well-performing results, remaining competitive with state-of-the-art approaches. Keywords: mobile android security, knowledge graphs embeddings, machine learning Published in DiRROS: 26.05.2025; Views: 214; Downloads: 82
Full text (1,76 MB) This document has many files! More... |
2. |
3. Field-scale UAV-based multispectral phenomics: : Leveraging machine learning, explainable AI, and hybrid feature engineering for enhancements in potato phenotypingJanez Lapajne, Andrej Vončina, Ana Vojnović, Daša Donša, Peter Dolničar, Uroš Žibrat, 2025, original scientific article Keywords: Multispectral imaging, Potato research, Machine learning, Interpretability techniques Published in DiRROS: 10.12.2024; Views: 328; Downloads: 171
Full text (7,87 MB) This document has many files! More... |
4. Knots and $\theta$-curves identification in polymeric chains and native proteins using neural networksFernando Bruno da Silva, Boštjan Gabrovšek, Marta Korpacz, Kamil Luczkiewicz, Szymon Niewieczerzal, Maciej Sikora, Joanna I. Sulkowska, 2024, original scientific article Abstract: Entanglement in proteins is a fascinating structural motif that is neither easy to detect via traditional methods nor fully understood. Recent advancements in AI-driven models have predicted that millions of proteins could potentially have a nontrivial topology. Herein, we have shown that long short-term memory (LSTM)-based neural networks (NN) architecture can be applied to detect, classify, and predict entanglement not only in closed polymeric chains but also in polymers and protein-like structures with open knots, actual protein configurations, and also $\theta$-curves motifs. The analysis revealed that the LSTM model can predict classes (up to the $6_1$ knot) accurately for closed knots and open polymeric chains, resembling real proteins. In the case of open knots formed by protein-like structures, the model displays robust prediction capabilities with an accuracy of 99%. Moreover, the LSTM model with proper features, tested on hundreds of thousands of knotted and unknotted protein structures with different architectures predicted by AlphaFold 2, can distinguish between the trivial and nontrivial topology of the native state of the protein with an accuracy of 93%. Keywords: machine learning, topology, protein databases, entanglements, open knots, closed knots Published in DiRROS: 23.10.2024; Views: 361; Downloads: 534
Full text (3,61 MB) This document has many files! More... |
5. A ǂFramework for applying data-driven AI/ML models in reliabilityRok Hribar, Margarita Antoniou, Gregor Papa, 2024, independent scientific component part or a chapter in a monograph Abstract: In this chapter, we present a framework for applying artificial intelligence (AI)/machine learning (ML) in reliability, in the context of the iRel40 project. Data-driven models are becoming an increasingly fruitful tool for detecting patterns in complex data and identifying the circumstances in which they occur. Using only data, gathered along the value chain, data-driven methods are now being used to detect indications of potential early failures, signs of wear out or degradation, and other unwanted events within the development, fabrication, or service phases of the electronic components and systems. We present general considerations that were found to be important during the iRel40 project, when designing pipelines that combine data processing with the AI/ML models for predicting or detecting reliability issues. This chapter serves as an introduction to the definitions and concepts used within the specific use cases that rely on the AI/ML methodology within the iRel40 project. Keywords: machine learning, artificial intelligence, data-driven models Published in DiRROS: 23.07.2024; Views: 563; Downloads: 214
Link to file |
6. Reliability improvements for in-wheel motorGašper Petelin, Rok Hribar, Stane Ciglarič, Jernej Herman, Anton Biasizzo, Peter Korošec, Gregor Papa, 2024, independent scientific component part or a chapter in a monograph Abstract: Setting up a reliable electric propulsion system in the automotive sector requires an intelligent condition monitoring device capable of reliably assessing the state and the health of the electric motor. To allow for a massive integration of such monitoring devices, they must be inexpensive and small. These requirements limit their accuracy. However, we show in this chapter that these limitations can be significantly reduced by appropriate processing of the sensor data. We have used machine learning models (random forest and XGBoost) to transform very noisy motor winding insulation resistance measurements made by a low-cost device into a much more reliable value that can compete with measurements made by a high-priced state-of-the-art measurement system. The proposed method is an important building block for a future smart condition monitoring system and enables a cost-effective and accurate assessment of the condition of electric motor health in connection with the condition of their winding insulation. Keywords: machine learning models, low-cost device, electric motor Published in DiRROS: 23.07.2024; Views: 607; Downloads: 262
Link to file |
7. Comparison of in-situ chlorophyll-a time series and sentinel-3 ocean and land color instrument data in Slovenian national waters (Gulf of Trieste, Adriatic Sea)El Khalil Cherif, Patricija Mozetič, Janja Francé, Vesna Flander-Putrle, Jana Faganeli Pucer, Martin Vodopivec, 2021, original scientific article Abstract: While satellite remote sensing of ocean color is a viable tool for estimating large-scale patterns of chlorophyll-a (Chl-a) and global ocean primary production, its application in coastal waters is limited by the complex optical properties. An exploratory study was conducted in the Gulf of Trieste (Adriatic Sea) to assess the usefulness of Sentinel-3 satellite data in the Slovenian national waters. OLCI (Ocean and Land Colour Instrument) Chl-a level 2 products (OC4Me and NN) were compared to monthly Chl-a in-situ measurements at fixed sites from 2017 to 2019. In addition, eight other methods for estimating Chl-a concentration based on reflectance in different spectral bands were tested (OC3M, OC4E, MedOC4, ADOC4, AD4, 3B-OLCI, 2B-OLCI and G2B). For some of these methods, calibration was performed on in-situ data to achieve a better agreement. Finally, L1-regularized regression and random forest were trained on the available dataset to test the capabilities of the machine learning approach. The results show rather poor performance of the two originally available products. The same is true for the other eight methods and the fits to the measured values also show only marginal improvement. The best results are obtained with the blue-green methods (OC3, OC4 and AD4), especially the AD4SI (a designated fit of AD4) with R = 0.56 and RMSE = 0.4 mg/m³, while the near infrared (NIR) methods show underwhelming performance. The machine learning approach can only explain 30% of the variability and the RMSE is of the same order as for the blue-green methods. We conclude that due to the low Chl-a concentration and the moderate turbidity of the seawater, the reflectance provided by the Sentinel-3 OLCI spectrometer carries little information about Chl-a in the Slovenian national waters within the Gulf of Trieste and is therefore of limited use for our purposes. This requires that we continue to improve satellite products for use in those marine waters that have not yet proven suitable. In this way, satellite data could be effectively integrated into a comprehensive network that would allow a reliable assessment of ecological status, taking into account environmental regulations. Keywords: hydrobiology, coastal waters, Gulf of Trieste, chlorophyll-a, Sentinel-3, OLCI, machine learning Published in DiRROS: 19.07.2024; Views: 599; Downloads: 831
Full text (5,77 MB) This document has many files! More... |
8. Models for forecasting the traffic flow within the city of LjubljanaGašper Petelin, Rok Hribar, Gregor Papa, 2023, original scientific article Abstract: Efficient traffic management is essential in modern urban areas. The development of intelligent traffic flow prediction systems can help to reduce travel times and maximize road capacity utilization. However, accurately modeling complex spatiotemporal dependencies can be a difficult task, especially when real-time data collection is not possible. This study aims to tackle this challenge by proposing a solution that incorporates extensive feature engineering to combine historical traffic patterns with covariates such as weather data and public holidays. The proposed approach is assessed using a new real-world data set of traffic patterns collected in Ljubljana, Slovenia. The constructed models are evaluated for their accuracy and hyperparameter sensitivity, providing insights into their performance. By providing practical solutions for real-world scenarios, the proposed approach offers an effective means to improve traffic flow prediction without relying on real-time data. Keywords: traffic modeling, time-series forecasting, traffic-count data set, machine learning, model comparison Published in DiRROS: 28.09.2023; Views: 1207; Downloads: 522
Full text (5,05 MB) This document has many files! More... |
9. Algorithm instance footprint : separating easily solvable and challenging problem instancesAna Nikolikj, Sašo Džeroski, Mario Andrés Muñoz, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, published scientific conference contribution Keywords: black-box optimization, algorithms, problem instances, machine learning Published in DiRROS: 15.09.2023; Views: 1121; Downloads: 568
Full text (2,03 MB) This document has many files! More... |
10. Assessing the generalizability of a performance predictive modelAna Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, published scientific conference contribution Keywords: algorithms, predictive models, machine learning Published in DiRROS: 15.09.2023; Views: 1263; Downloads: 642
Full text (935,67 KB) This document has many files! More... |