
This is the Author-Accepted Version of the paper: 

Nikolikj, A., Cenikj, G., Ispirova, G., Vermetten, D., Dieter Lang, R., Engelbrecht, A. P., Doerr, C., 
Korošec, P., & Eftimov, T. (2023). Assessing the generalizability of a performance predictive 
model. 311–314. https://doi.org/10.1145/3583133.3590617  

 

© 2023 Owner/Author(s). This is the author's version of the work. It is posted here for your 
personal use. Not for redistribution. The definitive Version of Record was published in GECCO 
'23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary 
Computation, https://doi.org/10.1145/3583133." 

 

 

https://doi.org/10.1145/3583133.3590617
https://doi.org/10.1145/3583133


Assessing the Generalizability of a Performance Predictive
Model
ANA NIKOLIKJ, Jožef Stefan Institute & Jožef Stefan International Postgraduate School, Slovenia
GJORGJINA CENIKJ, Jožef Stefan Institute & Jožef Stefan International Postgraduate School, Slovenia
GORDANA ISPIROVA, Jožef Stefan Institute, Slovenia
DIEDERICK VERMETTEN, LIACS, Leiden University, The Netherlands
RYAN DIETER LANG, Stellenbosch University, South Africa
ANDRIES PETRUS ENGELBRECHT∗, Stellenbosch University, South Africa
CAROLA DOERR, Sorbonne Université, CNRS, LIP, France
PETER KOROŠEC, Jožef Stefan Institute, Slovenia
TOME EFTIMOV, Jožef Stefan Institute, Slovenia

A key component of automated algorithm selection and configuration, which in most cases are performed
using supervised machine learning (ML) methods is a good-performing predictive model. The predictive
model uses the feature representation of a set of problem instances as input data and predicts the algorithm
performance achieved on them. Common machine learning models struggle to make predictions for instances
with feature representations not covered by the training data, resulting in poor generalization to unseen
problems. In this study, we propose a workflow to estimate the generalizability of a predictive model for
algorithm performance, trained on one benchmark suite to another. The workflow has been tested by training
predictive models across benchmark suites and the results show that generalizability patterns in the landscape
feature space are reflected in the performance space.

CCS Concepts: • Computing methodologies→ Machine learning; Learning latent representations;
Supervised learning; • Theory of computation→ Design and analysis of algorithms.

Additional Key Words and Phrases: meta-learning, single-objective optimization, generalization

1 INTRODUCTION
Automated algorithm configuration [8? ] and selection [4, 5] are among the most researched topics
in evolutionary computation. These systems often use predictive machine learning (ML) models
which take the feature representation of problem instances as input and predict the performance of
an algorithm instance on a problem instance. However, one of the main drawbacks presented in
these learning tasks is the low generalizability of the predictive models. The models fail to provide
accurate predictions for problem instances whose feature representation is underrepresented or
not presented in the training data.

Recent studies [6, 10] show that poor predictive results have been obtained when an ML model
for performance prediction is trained on the problem instances from one benchmark suite and then
evaluated on problem instances from another benchmark suite. Škvorc et al. [10] present results
when a random forest (RF) model trained on the BBOB (i.e., COCO) [3] benchmark suite provides
poor results when tested on artificially generated problem instances [? ] and vice-versa. Kostovska
et al. [6] show that an automated algorithm selector which is based on performance prediction
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models trained on the BBOB benchmark suite, cannot generalize to problem instances from the
Nevergrad’s YABBOB [1] benchmark suite.

Our contribution:We propose a workflow to estimate the generalizability of a predictive model
from one benchmark suite to another. Problem instances are grouped into clusters based on their
features and further use the distribution of each benchmark suite represented as the number of
problem instances across the clusters as a meta-representation for each benchmark suite. Similarity
between benchmark suites is calculated using this meta-representation. This similarity can indicate
if a predictive model can be generalized across benchmark suites. We evaluated the workflow by
training predictive models and found that generalizability patterns in the feature space were also
present in the performance space.

Data and code availability: The data and the code involved in this study are available at [? ].

2 ASSESSING GENERALIZABILITY WORKFLOW
Let us assume that we have𝑚 benchmark suites. Each benchmark suite can consist of a different
number of problem instances. One out of𝑚 benchmark suites is selected to train the supervised
ML predictive model (M) and the remaining𝑚 − 1 benchmark suites are used to test the model. To
assess the generalizability of the modelM to the different benchmark suites used for testing, we
propose the following workflow:
Defining a unified meta-representation on a problem instance level – represent the problem
instances from all benchmark suites using the same 𝑛 meta-features that describe the landscape
properties of the problem instances. With this, all problem instances (i.e., the ones selected for
training and the remaining ones used for testing) are projected into the same 𝑛-dimensional vector
space. Defining a coverage matrix – based on their meta-representation cluster the problem
instances from all benchmark suites into 𝑘 clusters. Next, for each benchmark suite calculate
the percentage of problem instances that belong to each cluster. With this, we define 𝑘-vector
meta-representation on a benchmark suite level that represents the distribution of the benchmark
suite across different clusters (i.e different regions in the problem space).
Define the similarity between two benchmark suites – the similarity between a pair of bench-
mark suites is calculated using their coverage matrix-based meta-representation. The approach
uses cosine similarity as a similarity measure [9].

High benchmark suite similarity suggests accurate predictions by a model trained on one suite for
the other suite. The low similarity suggests poor generalization and coverage of different problem
landscape space regions.

3 EXPERIMENTAL DESIGN
The evaluation of the workflow has been performed in two experiments. More details about them
are provided below.
Benchmark suites: In the first experiment, we involve the benchmark suite data available from a
previous study [7], where the BBOB, CEC 2013, CEC 2014, CEC 2015, and CEC 2017 benchmark
suites are used. The CEC benchmark suites change annually, with some overlap in problem instances
across different suites, but the definition of the same problem instance differs each year, which may
result in varying properties of the benchmarks even with the same problem instance definition.
In the experiments, the problem dimension is set to 𝐷 = 10. In the second experiment, we select
benchmark problem instances that are affine recombinations of pairs of BBOB problem instances,
where 9,936 new problem instances are generated for several dimensions [2]. Next, we use the
SELECTOR approach [? ] to select diverse benchmark problem instances in 𝐷 = 5 based on their 14
landscape features. The benchmark problem instances have been transformed into a graph based
on the cosine similarity using their landscape features. Next, the Maximal Independent Set method
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has been run five times independently to select five benchmark suites (BS1, BS2, BS3, BS4, BS5)
that contain around 110 problem instances with minimal overlap. SELECTOR guarantees that the
distribution of the problem instances in the five independent selections is similar.
Performance data: In the first experiment, performance data for the Covariance Matrix Adaption
Evolutionary Strategy (CMA-ES) [? ] has been used. The algorithm stops after either reaching
100,000 function evaluations or finding a solution within 10−8 of the global optimum. As a target
in the regression models, we used the obtained solutions’ precision (i.e., the error to the global
optimum). In the second experiment, we use the performance data of the Diagonal CMA-ES [?
]. Here, we also retrieve the precision after a budget of 10,000 function evaluations as a target
variable for the regression models. For both experiments, we use their default hyper-parameters
implementation from the Nevergrad library [1].
Exploratory landscape analysis: For the first experiment, to describe the landscape properties
of each problem instance, 64 publicly available ELA features from a previous study [7] are used. In
the second experiment, 14 ELA features are used, also available from a previous study [2].
Clustering: The K-Means algorithm clusters problem instances from benchmark suites in both
experiments. The Silhouette score is used to estimate cluster number in the first experiment and
the elbow method with the distortion metric is used in the second experiment. We tested different
measures to estimate the number of clusters, just to check the sensitivity of the approach using
different measures. ELA features are normalized before clustering, and the scikit-learn package in
Python is used for its implementation.
Predictive models: Random Forest (RF) models (from the scikit-learn package in Python with
default hyper-parameters) are trained on each benchmark suite, evaluated on remaining suites,
and reported using median absolute error (MDAE). Results are analyzed to determine if a pattern
from the coverage matrix is also present in automated algorithm performance prediction model
performance.

4 RESULTS AND DISCUSSION
Here, the results for both experiments are presented in more detail.
First experiment. The optimal number of clusters has been estimated to 13. Table 1 presents
the coverage matrix, where each cell in the table shows the percentage of the total number of
instances from the benchmark suite presented in the row, that belongs to each cluster presented
in the column. Each row then is used as a meta-representation for each benchmark suite. The
results show that the BBOB benchmark suite is the most widely spread in the feature space (i.e.,
landscape space) as its instances are distributed across nine clusters out of 13, compared to the CEC
benchmark suites which condensed to a smaller number of clusters. There are four clusters that
consist only of BBOB problem instances. Also, it is visible that the distribution of the CEC 2014
and CEC 2017 problem instances across the clusters is very similar.

Table 1. Coverage matrix calculated with 13 clusters.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

BBOB 0.04 0.47 0.08 0.00 0.03 0.08 0.06 0.00 0.00 0.00 0.18 0.04 0.02
CEC2013 0.00 0.00 0.00 0.40 0.04 0.28 0.04 0.08 0.08 0.00 0.00 0.08 0.00
CEC2014 0.00 0.00 0.03 0.30 0.10 0.17 0.10 0.27 0.00 0.03 0.00 0.00 0.00
CEC2015 0.00 0.00 0.00 0.13 0.00 0.13 0.27 0.33 0.00 0.07 0.00 0.07 0.00
CEC2017 0.00 0.00 0.00 0.31 0.07 0.07 0.21 0.24 0.00 0.03 0.00 0.07 0.00

Figure 1 presents a heatmap of the cosine similarity between the benchmark suitemeta-representations,
and hierarchical clustering dendrogram of the benchmark suites’ meta-representations. Based on
the cosine similarity between the benchmark suites, the similarity matrix is reorganized such that
the more similar benchmark suites are placed together in the dendrogram. The colors in the plot
represent the cosine similarity. The figure shows that all CEC benchmark suites have high similarity.
The pairwise cosine similarities between all pairs of CEC benchmark suites are greater than 0.5.
This is as expected since the CEC suites have had little modifications through the years. However,
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Fig. 1. Heatmap of the cosine similarity between benchmark suites representations generated based on 13
clusters.
comparing them to the BBOB benchmark suite it seems that there is a big difference in how their
problem instances are distributed in the feature space, also visible earlier from the coverage matrix.
Looking into the clustering result, it follows that CEC 2014 and CEC 2017 are the most similar ones,
further both of them are close to CEC2015, and then to CEC 2013, while all of them are placed on
another side of the dendrogram compared to the BBOB. This result further points out that we can
expect a predictive model trained on CEC 2014 to have the best results when it will be evaluated on
CEC 2017 and vice-versa. Further, a model trained on CEC 2014 or CEC 2017 is expected to have
good prediction results when it will be evaluated on CEC 2013 and CEC 2015. Also, models trained
on CEC 2013 or CEC 2015 will have to generalize the prediction results across CEC benchmark
suites. The dissimilarity of CEC benchmark suites with the BBOB benchmark suite indicates that
we do not have a guarantee that the model will generalize across them.

To investigate if the similarity patterns in the landscape feature space will also be present in
the performance space as model generalizability patterns, we present the evaluation results of an
algorithm performance predictive model, when the model is trained on one benchmark suite and
evaluated on the remaining ones. The heatmap in Figure 2 presents the RF model errors for the
performance prediction of the CMA-ES. Each cell presents the median absolute error of the RF
model, trained on the benchmark suite presented in the row, and evaluated on the benchmark suite
presented in the column. The results show that a predictive model trained on BBOB produces larger
errors across all CEC benchmark suites. A model trained on CEC 2017 provides smaller errors
when it is evaluated on CEC 2013, 2014, and 2015, and ends up with a larger error for BBOB. When
CEC 2013 is used to train the model, similar errors are obtained across all benchmark suites. A
similar effect occurs when CEC 2015 is used for training, good errors are achieved on CEC 2014
and CEC 2017, and the error increases for CEC 2013, ending up with a larger error for BBOB.

The results indicate that a similar distribution of the benchmark suites over the landscape feature
space leads to similar model errors on the suites. This study does not guarantee that the training and
testing error will be good but it guarantees that they will be in similar ranges. We are not dealing
with the quality of the benchmark suites but only comparing the landscape feature distribution of
the benchmark suites. However, it is not possible to establish a complete generalizability mapping
function between the landscape feature space and the performance space, since these algorithms
are stochastic in nature and they all have different behavior.
Second experiment: Using the elbow method of the distortion metric curve, the optimal number
of clusters is determined to be four. Table 2 presents the distribution of the five artificial benchmark
suites across the four clusters. From the table, it follows that all benchmark suites have similar
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Fig. 2. Heatmap showing the MDAEs of an RF model for the performance of CMA. Rows indicate the train
benchmark suite and columns indicate the benchmark suite the model was evaluated on.

Fig. 3. Heatmap showing the MDAEs of an RF model for the performance of diagonal CMA-ES. Rows indicate
the train benchmark suite and columns indicate the benchmark suite the model was evaluated on.

distribution across the clusters, thus following the same distribution across the feature space.
In addition, for each pair of benchmark suites we analyzed the cosine similarity between their
meta-representations based on the coverage matrix. The obtained cosine similarities of the meta-
representations exceeded 0.98 for all pairs of benchmark suites. This result indicates that a model
trained on any one of these benchmark suites should be easy to generalize to the remaining
benchmark suites.

Table 2. Coverage matrix calculated with four clusters.
C1 C2 C3 C4

BS1 0.14 0.21 0.32 0.32
BS2 0.16 0.26 0.33 0.25
BS3 0.16 0.27 0.32 0.25
BS4 0.20 0.22 0.31 0.27
BS5 0.15 0.26 0.34 0.25

The evaluation results (MDAE) of the predictive models trained on each of the five artificial
benchmark suites and evaluated on the remaining four for the diagonal CMA-ES are presented
in Figure 3. The rows indicate the benchmark suite on which the model has been trained and the
columns indicate the benchmark suite on which the model has been evaluated.
The results show that the patterns that are visible in the landscape feature space are also

reflected in the model performance space. Models trained on all five benchmark suites separately
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are generalizable or have similar errors on all the remaining benchmarking suites. We also need to
point out here that the training MDAE is smaller than all the MDAE obtained on the test benchmark
suites, which is expected in a machine learning setup. However, the difference between the training
and testing errors is not practically significant (e.g., training MDAE is 0.06 for BS1, 0.04 for BS2,
0.08 for BS3, 0.03 for BS4, and 0.04 for BS5 for diagonal CMA-ES).
To show that different distributions in the feature landscape space lead to worse model per-

formance,we assessed all instances in the fourth cluster. This cluster, referred to as BS6, includes
samples from all five artificially generated benchmark suites and was randomly selected to ensure a
different feature landscape distribution than the other five suites. The BS6 instances cover only one
region of the feature landscape and do not include samples from the three other regions present
in the clustering result that are part of the other five suites. Table 3 presents RF errors when the
model is trained on BS6 and evaluated for automated algorithm performance prediction on the
other five benchmark suites. It is obvious that the error models are worse (compared with the errors
presented in Figure 3. The results prove that different feature landscape distribution decreases the
generalization of a predictive model.

Table 3. RF errors when the model is trained on BS6 and evaluated on the other five benchmark suites.

BS1 BS2 BS3 BS4 BS5

DE 0.185922 0.182945 0.183876 0.185423 0.202225
RSPSO 0.479039 0.492742 0.474655 0.506378 0.517526
diag CMA-ES 0.240901 0.240292 0.237267 0.25774 0.240292

5 CONCLUSION
Our study proposes a workflow for estimating the generalizability of performance predictive
models in automated algorithm selection and configuration. The workflow involves converting
problem instances into a common meta-representation and clustering them to create a benchmark
suite meta-representation. The similarity between benchmark suites is then calculated to indicate
generalizability between models. Two experiments were conducted, one with commonly used
benchmark suites and the other with artificially generated suites. Results show that generalizability
patterns in the feature landscape space also exist in the performance space, assisting in predicting
model performance on new instances. However, the workflow is dependent on the quality of the
feature representation and may be affected by different performances of the algorithm with similar
feature representations. Future work will test the workflow with different feature representations
and families of supervised machine learning methods.
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