Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (hydrogeochemistry) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Hydrogeochemical and isotopic characterisation of the Učja Aquifer, NW Slovenia
Petra Žvab Rožič, 2024, original scientific article

Abstract: The groundwater characteristics of the Učja aquifer were investigated using geochemical and isotopic data. The water discharge and physico-chemical properties of the groundwater and the Učja River reflect the climate that is characteristic of the area. The mixed snow/rainfall regime is characteristic for the Učja Valley, with the highest discharges appearing during the spring snowmelt and autumn precipitation, and the lowest discharges in the winter and especially summer months. The temperature of the groundwater and the Učja River is lower in winter and higher in summer. The specific electrical conductivity values indicate a very permeable carbonate aquifer. Higher conductivity values were observed in spring and autumn at all sampling sites, which is related to snowy and rainy periods. The groundwater from the Učja aquifer indicates a uniform type of water (Ca-Mg-HCO3), w it h Ca2+, Mg2+ and HCO3– the most abundant ions. Differences in Ca2+ and Mg2+ concentrations and in the Mg2+/Ca2+molar ratio between sampling sites were observed. Those springs with lower Mg2+ and lower Mg2+/Ca2+ molar ratios indicate limestone recharge areas, and those springs with higher Mg2+ and molar ratios indicate interaction with the dolomite hinterland. The pH values confirm alkaline waters characteristic of carbonate aquifers. The hydrogen (δ2H) and oxygen (δ18O) isotope values suggest the main source of water is from precipitation from a complex mixing of maritime and continental air masses. An altitude isotopic effect is observed with minor δ18O and δ2H depletion at higher altitude sampling sites compared to those springs at lower altitudes. The altitude isotopic effect is most prominent in spring. The δ13CDIC values indicate the dissolution of carbonates and the degradation of organic matter.
Keywords: groundwater, hydrogeochemistry, isotopes, cross-border aquifer, Učja Valley
Published in DiRROS: 09.07.2024; Views: 126; Downloads: 89
.pdf Full text (4,48 MB)

2.
Evaluating mineral matter dynamics within the peatland as reflected in water composition
Valentina Pezdir, Luka Serianz, Mateja Gosar, 2024, original scientific article

Abstract: Peatland hydrology plays an important role in preserving or changing the record in any consideration of past atmospheric deposition records in peat bogs. The Šijec bog, located on the Pokljuka plateau in Slovenia, is one of the largest ombrotrophic peatlands. We sampled the surface pools, pore water, drainage from the peatland, and karst streams not connected to the peatland. Additionally, we sampled the precipitation, as ombrotrophic peatlands receive mineral matter solely from the atmosphere. The results of the evaluation of the chemical and isotopic composition indicated different origins of dissolved mineral matter in different water types. The components originating from the bedrock and surrounding soils (Ca, Mg, Al, Si, Sr) predominated in the streams. The chemical composition of the peatland drainage water revealed the significant removal of major components from the peatland, particularly elements like Al, Fe, and REE, and metals that are readily dissolved in an acidic environment or mobile in their reduced state. Despite their solubility, concentrations of metals (As, Cr, Cu, Fe, Ni, Pb, Ti) and REE in surface pools remained higher than in the drainage due to incomplete elimination from the peatland. The composition of pore water reflects variations among the W and E parts of the peatland, indicating a heterogenous hydrological structure with different dynamics, such as an additional source of water at approximately 90 cm depth in the NW part. The chemical composition and isotope signature (18O and 2H) of pore water additionally indicated a heterogeneous recharge with residence times of less than a year. The overall analysis indicated a predominantly ombrotrophic type and a small part in the NW area of the peatland as a minerotrophic type of peat.
Keywords: peatland, hydrogeochemistry, isotopes
Published in DiRROS: 18.06.2024; Views: 164; Downloads: 83
.pdf Full text (7,67 MB)

3.
Using stable isotopes and major ions to identify recharge characteristics of the Alpine groundwater-flow dominated Triglavska Bistrica River
Luka Serianz, Sonja Cerar, Polona Vreča, 2021, original scientific article

Abstract: Triglavska Bistrica is a typical Alpine river in the north-western part of Slovenia. Its recharge area includes some of the highest peaks in the Julian Alps. The hydrogeological conditions and flow of the river depend largely on groundwater exchange between the karstified aquifer in the carbonate rocks and the intergranular aquifer in the glaciofluvial deposits. The average volume of the river flow is up to several m3/s. In this study, water samples from different locations along the river were analysed for stable isotope ratios of oxygen and hydrogen, major ions, and concentration of tritium activity. The correlation of major ions suggests that the recharge area consists of both limestone and dolomite rocks. The δ18O and δ2H values decrease downstream, implying that the average recharge elevation increases. At the downstream sampling site V-5, located approx. 300 m upstream from the confluence of the Sava Dolinka River, the calculated mean recharge altitude is estimated to be 1,996 m.
Keywords: groundwater, oxygen and hydrogen isotopes, hydrogeochemistry, recharge area, Alpine aquifer, Slovenia
Published in DiRROS: 09.03.2022; Views: 1062; Downloads: 350
.pdf Full text (3,01 MB)

Search done in 0.31 sec.
Back to top