Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (assessment) .

11 - 20 / 23
First pagePrevious page123Next pageLast page
11.
Experimental carbonation study for durability assessment of novel cementitious materials
Sebastijan Robič, Aljoša Šajna, Lucija Hanžič, Alisa Machner, Marie Helene Bjørndal, Klaartje De Weerdt, Yushan Gu, Benoit Bary, Rosamaria Lample, 2021, published scientific conference contribution

Abstract: The design process of concrete structures is carried out using standards and guidelines, while the durability predictions of concrete structures is supported only with exposure classes and experience-based requirements. To improve durability predictions of the carbonation resistance of concrete, a numerical model is being developed within the Horizon 2020 project EnDurCrete, coupling the rate of carbonation, and the drying rate. To verify the numerical model, an accelerated carbonation study was carried out. Experiments were conducted on mortars incorporating a novel CEM II/C (S-LL) cement, developed within the EnDurCrete project, and a commercially available reference cementCEM II/A-S. EnDurCrete mortars (EnM) and reference mortars (RefM) were prepared with water-cement ratios of 0.6 and 0.5 (denoted with label extensions -06 and -05). Visual assessments and thermogravimetric analysis (TGA) were used to measure the carbonation rates, which were found to be ~1.0 mm day-0.5 in EnM-06 and ~0.6 mm day-0.5 in RefM-06, while in EnM-05 and RefM-05 the values were ~0.7 and ~0.2 mm day-0.5 respectively. Additionally, TGA shows that the initial portlandite (CH) content is ~1.5 wt% in EnM-06 as opposed to ~3.0 wt% in RefM-06. The difference in the initial CH content in the two hydrated binders might explain the difference in their carbonation rate. During the moisture transport experiments a gravimetric method was used to determine mass changes as specimens underwent drying and resaturation with and without CO2 present. The drying led to a decrease in mass, but in the presence of CO2 this mass loss was compensated by the mass gain due to uptake of CO2 during carbonation. The resaturation experiments indicate an increase in the suction porosity in the carbonated samples compared to the non-carbonated samples.
Keywords: concrete, absorption of water, carbonation, durability assessment, model verification
Published in DiRROS: 25.01.2024; Views: 334; Downloads: 209
.pdf Full text (9,29 MB)
This document has many files! More...

12.
First experiences in the development of slovenian sustainable building indicators
Sabina Jordan, Friderik Knez, Miha Tomšič, Marjana Šijanec-Zavrl, 2020, published scientific conference contribution

Abstract: The construction sector is recognised as having a key impact on the life on Earth. Consequently, the EU has set clear environmental goals for 2030 and 2050, and is developing policies and tools to achieve them. One of the tools for achieving these goals is to establish a system for the evaluation of the environmental performance of buildings, with the priorities of reducing GHG emissions, saving with natural resources and preserving the environment, while maintaining sustainable development and ensuring a healthy living environment. Slovenia has joined in achieving this goal with a study on the state-of-play, commissioned a few years ago by the Ministry of the Environment and Spatial Planning, as the starting point for the development of sustainable building indicators (SBIs). The research, which included an analysis of the Slovenian legislation, commercial certification systems for sustainable buildings and development in the field of green public procurement, exposed complementary but rather different goals and views. It further showed that the Level(s), which provides a common EU approach in assessing the environmental performance of buildings, seems to be the most appropriate framework and the basis for the development of the Slovenian system of SBIs. The development of the Slovenian SBIs is currently underway within the project LIFE IP CARE4CLIMATE with the preparation of guidelines, data sources and procedures for determining the value of individual indicators for the assessment of buildings. Initial research with key construction stakeholders has shown that the solution must be linked to the national building legislation, computational methods and software tools, and also to the established planning procedures. The analyses have also shown that, parallel to developing such a system, it is essential to provide a functional supporting environment and a specific, purposely designed information platform to connect the stakeholders with the developers of the sustainable building indicators system.
Keywords: sustainable building indicators, evaluation, assessment, Level(s), CARE4CLIMATE
Published in DiRROS: 19.01.2024; Views: 275; Downloads: 144
.pdf Full text (18,89 MB)
This document has many files! More...

13.
Geological-genetic structure of Irpin city, the role of lithological factors during engineering-geological zoning and construction assessment
Pavlo Zhyrnov, Iryna Solomakha, 2023, original scientific article

Abstract: The scheme of engineering-construction assessment created based on engineering-geological zoning of the city’s territory is desirable among additional graphic materials in the design of master plans projects as determined by building regulations. Engineering-geological zoning provides for different ranks’ selection of engineering-geological units (EG units), which have a particular range of common engineering-geological conditions that ultimately determine the construction sites’ affiliation to a specific suitability category. Geological-genetic structure of Irpin city of Kyiv region (Ukraine) is explored in this article. A variant of the creation of a large-scale engineering-geological map and corresponding geological-lithological sections by supporting boreholes in the borders of the city based on the engineering-geological survey conducted is presented. The obtained result allowed the selection of engineering geological zoning units – engineering geological districts by general conditions of geological development and subdistricts by engineering-geological complexes of Quaternary rocks’ thickness. The analysis of soils’ geomechanical properties (engineering-geological elements) lays the foundations for the selection of engineering-geological sites based on the comparison of this information with geomorphological, hydrogeological and geodynamic data. Accounting of geological-lithological factors in the preparation of the construction assessment scheme in the project of Irpin city’s master plan has become the ultimate result.
Keywords: engineering-geological zoning, engineering-geological units, geological-genetic structure, engineering-geological map, construction assessment
Published in DiRROS: 15.01.2024; Views: 388; Downloads: 172
.pdf Full text (24,13 MB)

14.
Heavy metal signature and environmental assessment of nearshore sediments: Port of Koper (Northern Adriatic Sea)
Nastja Rogan Šmuc, Matej Dolenec, Sabina Dolenec, Ana Mladenovič, 2018, original scientific article

Abstract: Heavy metal abundance and potential environmental risks are reported for surface sediments (n = 21) from the Port of Koper area, Republic of Slovenia. The enrichment factor (EF) indicates minor enrichment in arsenic (As), cadmium (Cd), copper (Cu), molybdenum (Mo), lead (Pb), antimony (Sb), and zinc (Zn), moderately to severely enriched with nickel (Ni). The trace metal chemistries, in the context of sediment quality guidelines (SQG), imply adverse threshold effect concentrations (TEC) and probable effect concentrations (PEC), for Ni only. Sediment sequential leaching experiments demonstrated that the majority of heavy metals were of natural lithogenic origin and low bioavailability. The heavy metals’ potential for “Risk Assessment Code” values exhibited no or low anthropogenic environmental burden, with the exception of Mo.
Keywords: port sediments, heavy metals, chemical speciation, risk assessment, Northem Adriatic Sea
Published in DiRROS: 12.12.2023; Views: 292; Downloads: 155
.pdf Full text (6,88 MB)
This document has many files! More...

15.
Using the IUCN environmental impact classification for alien taxa to inform decision-making
Sabrina Kumschick, Sandro Bertolino, Tim M. Blackburn, Giuseppe Brundu, Katie E. Costello, Maarten De Groot, Thomas Evans, Belinda Gallardo, Piero Genovesi, Tanushri Govender, 2023, original scientific article

Abstract: The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species’ impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming–Montreal Global Biodiversity Framework (GBF) Target 6.
Keywords: biological invasions, evidence synthesis, impact assessment, managing invasive species, precautionary principle
Published in DiRROS: 11.12.2023; Views: 483; Downloads: 282
.pdf Full text (537,44 KB)
This document has many files! More...

16.
Condition assessment of roadway bridges: from performance parameters to performance goals
Maria P. Limongelli, Eleni Chatzi, Andrej Anžlin, 2018, original scientific article

Abstract: Deterioration of bridges due to ageing and higher demands, induced by increased traffic load, require the development of effective maintenance policies and intervention strategies. Such concern should be aimed at ensuring the required levels of safety, while optimally managing the limited economic resources. This approach requires a transversal advance; from the element level, through the system level, all the way to the network level. At the same time intervention prioritisation based on the importance of the system (bridge) inside the network (e.g. highway), or of the single structural element inside the bridge is dependent. The first step in bridge condition assessment is the verification of safety and reliability requirements that is carried out using the traditional prescriptive (deterministic) approach or the current performance-based (probabilistic) approach. A critical issue for efficient management of infrastructures lies in the available knowledge on condition and performance of bridge asset. This information is obtained using a collection of significant Performance Parameters at one or more of the three levels (element, system, and network). Traditional techniques for estimation of Performance Parameters rely on already established visual inspection. However, a more reliable description of the system performance is obtained through Non-Destructive Testing and Structural Health Monitoring. Condition assessment essentially pertains to the check of compliance with Performance Goals and requires the definition and computation of Performance Indicators. They are calculated directly from Performance Parameters or from physical models calibrated using the Performance Parameters collected on the structure. Paper overviews the steps to bridge condition assessment regarding safety and reliability.
Keywords: bridge, reliability, safety, condition assessment, performance goals, performance parameters
Published in DiRROS: 29.11.2023; Views: 355; Downloads: 172
.pdf Full text (487,92 KB)
This document has many files! More...

17.
The role of electricity mix and production efficiency improvements on greenhouse gas (GHG) emissions of building components and future refurbishment measures
Tajda Potrč Obrecht, Sabina Jordan, Andraž Legat, Alexander Passer, 2021, original scientific article

Abstract: Purpose: An estimation of the environmental impact of buildings by means of a life cycle assessment (LCA) raises uncertainty related to the parameters that are subject to major changes over longer time spans. The main aim of the present study is to evaluate the influence of modifications in the electricity mix and the production efficiency in the chosen reference year on the embodied impacts (i.e., greenhouse gas (GHG) emissions) of building materials and components and the possible impact of this on future refurbishment measures. Methods: A new LCA methodological approach was developed and implemented that can have a significant impact on the way in which existing buildings are assessed at the end of their service lives. The electricity mixes of different reference years were collected and assessed, and the main datasets and sub-datasets were modified according to the predefined substitution criteria. The influence of the electricity-mix modification and production efficiency were illustrated on a selected existing reference building, built in 1970. The relative contribution of the electricity mix to the embodied impact of the production phase was calculated for four different electricity mixes, with this comprising the electricity mix from 1970, the current electricity mix and two possible future electricity-mix scenarios for 2050. The residual value of the building was also estimated. Results and discussion: In the case presented, the relative share of the electricity mix GHG emission towards the total value was as high as 20% for separate building components. If this electricity mix is replaced with an electricity mix having greater environmental emissions, the relative contribution of the electricity mix to the total emissions can be even higher. When, by contrast, the modified electricity mix is almost decarbonized, the relative contribution to the total emissions may well be reduced to a point where it becomes negligible. The modification of the electricity mix can also influence the residual value of a building. In the observed case, the differences due to different electricity mixes were in the range of 10%. Conclusions: It was found that those parameters that are subject to a major change during the reference service period of the building should be treated dynamically in order to obtain reliable results. Future research is foreseen to provide additional knowledge concerning the influence of dynamic parameters on both the use phase and the end-of-life phase of buildings, and these findings will also be important when planning future refurbishment measures.
Keywords: global warming potential (GWP), production phase, electricity mix, production efciency, residual value, refurbishment, building components, life cycle assessment (LCA)
Published in DiRROS: 31.07.2023; Views: 512; Downloads: 253
.pdf Full text (1,44 MB)
This document has many files! More...

18.
An LCA methodolody for assessing the environmental impacts of building components before and after refurbishment
Tajda Potrč Obrecht, Sabina Jordan, Andraž Legat, Marcella Ruschi Mendes Saade, Alexander Passer, 2021, original scientific article

Abstract: Refurbishment is one of the most important measures for reducing the environmental impacts of the construction sector in the near future. According to the life cycle assessment (LCA) methodology for buildings, the environmental impacts of refurbishment measures should be assessed within the whole life cycle of the building and reflected in separate modules. However, in practice, refurbishment is often treated as the beginning of a new building life cycle. This leads to difficulties in correctly assessing the environmental impacts for the components that are reused or recycled after the refurbishment. The division of a building’s life cycle into two separate life cycles indicates that the environmental impacts must be divided between the life cycle before and the life cycle after the refurbishment for a correct assessment of the environmental impacts and a calculation of the residual value. We propose a newly developed methodology for calculating the environmental impacts and the residual value of refurbishment measures that also involves a division between life cycles. The new methodology is a combi-nation of already exiting methodologies that are innovatively combined and consists of four sequential steps. In the first step, the input, output and reuse flows between the life cycles before and after the refurbishment are defined. In the second step, the environmental impacts are assessed using the chosen allocation approach (i.e., the cut-off, cut-off with module D, avoided-burden, 50:50 and the product environmental footprint (PEF)). In the third step, a maintenance scenario is implemented according to the selected reference-service-life (RSL) database. In the fourth step, the residual value is estimated. The methodology was tested on selected building components. A sensitivity analysis for different allocation approaches and RSL databases was performed to show how the choice of these parameters can influence the results. The differences between the selected allocation approaches emerge if materials with recycled content are used or if the materials are being recycled or reused at the end of their life cycle. The developed methodology reliably estimates the environmental impacts as well as the residual value of the life cycle before and after the refurbishment. We expect that this research will stimulate practitioners to avoid the negligence of previous environmental flows, bringing scientific consistency to future assessments of refurbishment measures.
Keywords: Life cycle assessment (LCA), refurbishment, allocation approaches, residual value, reference service life (RSL)
Published in DiRROS: 28.07.2023; Views: 470; Downloads: 311
.pdf Full text (8,59 MB)
This document has many files! More...

19.
Experimental carbonation study for a durability assessment of novel cementitious materials
Lucija Hanžič, Sebastijan Robič, Alisa Machner, Marie Helene Bjørndal, Klaartje De Weerdt, Yushan Gu, Benoit Bary, Rosa Maria Lample Carreras, Aljoša Šajna, 2021, original scientific article

Abstract: Durability predictions of concrete structures are derived from experience-based require- ments and descriptive exposure classes. To support durability predictions, a numerical model related to the carbonation resistance of concrete was developed. The model couples the rate of carbonation with the drying rate. This paper presents the accelerated carbonation and moisture transport exper- iments performed to calibrate and verify the numerical model. They were conducted on mortars with a water-cement ratio of either 0.6 or 0.5, incorporating either a novel cement CEM II/C (S-LL) (EnM group) or commercially available CEM II/A-S cement (RefM group). The carbonation rate was determined by visual assessment and thermogravimetric analysis (TGA). Moisture transport experi- ments, consisting of drying and resaturation, utilized the gravimetric method. Higher carbonation rates expressed in mm/day−0.5 were found in the EnM group than in the RefM group. However, the TGA showed that the initial portlandite (CH) content was lower in the EnM than in the RefM, which could explain the difference in carbonation rates. The resaturation experiments indicate an increase in the suction porosity in the carbonated specimens compared to the non-carbonated specimens. The study concludes that low clinker content causes lower resistance to carbonation, since less CH is available in the surface layers; thus, the carbonation front progresses more rapidly towards the core.
Keywords: mortar, absorption of water, carbonation, durability assessment, model verification
Published in DiRROS: 05.07.2023; Views: 426; Downloads: 240
.pdf Full text (4,84 MB)
This document has many files! More...

20.
Search done in 6.24 sec.
Back to top