Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Živa Ramšak) .

1 - 10 / 19
First pagePrevious page12Next pageLast page
1.
GoMapMan : integration, consolidation and visualization of plant gene annotations within the MapMan ontology
Živa Ramšak, Špela Baebler, Ana Rotter, Matej Korbar, Igor Mozetič, Björn Usadel, Kristina Gruden, 2014, original scientific article

Abstract: GoMapMan (http://www.gomapman.org) is an open web-accessible resource for gene functional annotations in the plant sciences. It was developed to facilitate improvement, consolidation and visualization of gene annotations across several plant species. GoMapMan is based on the MapMan ontology, organized in the form of a hierarchical tree of biological concepts, which describe gene functions. Currently, genes of the model species Arabidopsis and three crop species (potato, tomato and rice) are included. The main features of GoMapMan are (i) dynamic and interactive gene product annotation through various curation options; (ii) consolidation of gene annotations for different plant species through the integration of orthologue group information; (iii) traceability of gene ontology changes and annotations; (iv) integration of external knowledge about genes from different public resources; and (v) providing gathered information to high throughput analysis tools via dynamically generated export files. All of the GoMapMan functionalities are openly available, with the restriction on the curation functions, which require prior registration to ensure traceability of the implemented changes.
Keywords: genes, plants
Published in DiRROS: 02.08.2024; Views: 78; Downloads: 61
.pdf Full text (4,88 MB)
This document has many files! More...

2.
Network modelling unravels mechanisms of crosstalk between ethylene and salicylate signalling in potato
Živa Ramšak, Anna Coll Rius, Tjaša Stare, Oren Tzfadia, Špela Baebler, Yves Van de Peer, Kristina Gruden, 2018, original scientific article

Abstract: To develop novel crop breeding strategies, it is crucial to understand the mechanisms underlying the interaction between plants and their pathogens. Network modeling represents a powerful tool that can unravel properties of complex biological systems. In this study, we aimed to use network modeling to better understand immune signaling in potato (Solanum tuberosum). For this, we first built on a reliable Arabidopsis (Arabidopsis thaliana) immune signaling model, extending it with the information from diverse publicly available resources. Next, we translated the resulting prior knowledge network (20,012 nodes and 70,091 connections) to potato and superimposed it with an ensemble network inferred from time-resolved transcriptomics data for potato. We used different network modeling approaches to generate specific hypotheses of potato immune signaling mechanisms. An interesting finding was the identification of a string of molecular events illuminating the ethylene pathway modulation of the salicylic acid pathway through Nonexpressor of PR Genes1 gene expression. Functional validations confirmed this modulation, thus supporting the potential of our integrative network modeling approach for unraveling molecular mechanisms in complex systems. In addition, this approach can ultimately result in improved breeding strategies for potato and other sensitive crops.
Keywords: network modelling, potato, molecular biology
Published in DiRROS: 01.08.2024; Views: 93; Downloads: 123
.pdf Full text (1,77 MB)
This document has many files! More...

3.
Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance
Ana Koren, Helena Motaln, Živa Ramšak, Kristina Gruden, Christian Schichor, Tamara Lah Turnšek, 2015, original scientific article

Abstract: Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future.
Keywords: glioblastoma heterogeneity, U87 cells, temozolomide resistance, cellular cross-talk, transcriptomics
Published in DiRROS: 29.07.2024; Views: 132; Downloads: 111
URL Link to full text
This document has many files! More...

4.
Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction
Neža Turnšek, Živa Ramšak, Katja Stare, Tjaša Stare, Dominik Vodnik, Andrej Blejec, Kristina Gruden, Wolfram Weckwerth, Stefanie Wienkoop, 2015, original scientific article

Abstract: Background Potato virus Y (PVY) is a major pathogen that causes substantial economic losses in worldwide potato production. Different potato cultivars differ in resistance to PVY, from severe susceptibility, through tolerance, to complete resistance. The aim of this study was to better define the mechanisms underlying tolerant responses of potato to infection by the particularly aggressive PVYNTN strain. We focused on the dynamics of the primary metabolism-related processes during PVYNTN infection. Results A comprehensive analysis of the dynamic changes in primary metabolism was performed, which included whole transcriptome analysis, nontargeted proteomics, and photosynthetic activity measurements in potato cv. Désirée and its transgenic counterpart depleted for accumulation of salicylic acid (NahG-Désirée). Faster multiplication of virus occurred in the NahG-Désirée, with these plants developing strong disease symptoms. We show that while the dynamics of responses at the transcriptional level are extensive and bimodal, this is only partially translated to the protein level, and to the final functional outcome. Photosynthesis-related genes are transiently induced before viral multiplication is detected and it is down-regulated later on. This is reflected as a deficiency of the photosynthetic apparatus at the onset of viral multiplication only. Interestingly, specific and constant up-regulation of some RuBisCO transcripts was detected in Désirée plants, which might be important, as these proteins have been shown to interact with viral proteins. In SA-deficient and more sensitive NahG-Désirée plants, consistent down-regulation of photosynthesis-related genes was detected. A constant reduction in the photochemical efficiency from the onset of viral multiplication was identified; in nontransgenic plants this decrease was only transient. The transient reduction in net photosynthetic rate occurred in both genotypes with the same timing, and coincided with changes in stomatal conductivity. Conclusions Down-regulation of photosynthesis-related gene expression and decreased photosynthetic activity is in line with other studies that have reported the effects of biotic stress on photosynthesis. Here, we additionally detected induction of light-reaction components in the early stages of PVYNTN infection of tolerant interaction. As some of these components have already been shown to interact with viral proteins, their overproduction might contribute to the absence of symptoms in cv. Désirée.
Keywords: plant-pathogen interactions, Potato virus Y, potyviridae, salicylic acid, whole transcriptome analysis, shot-gun proteomics, photosynthetic parameters
Published in DiRROS: 29.07.2024; Views: 93; Downloads: 131
URL Link to full text
This document has many files! More...

5.
Salicylic acid perturbs sRNA-gibberellin regulatory network in immune response of potato to Potato virus Y infection
Maja Križnik, Marko Petek, David Dobnik, Živa Ramšak, Špela Baebler, Stephan Pollmann, Jan F. Kreuze, Jana Žel, Kristina Gruden, 2017, original scientific article

Abstract: Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level responses to physiological processes. We discovered an interesting novel sRNAs-gibberellin regulatory circuit being activated as early as 3 days post inoculation (dpi) before viral multiplication can be detected. Two endogenous sRNAs, miR167 and phasiRNA931 were predicted to regulate gibberellin biosynthesis genes GA20-oxidase and GA3-oxidase. The increased expression of phasiRNA931 was also reflected in decreased levels of GA3-oxidase transcripts. Moreover, decreased concentration of gibberellin confirmed this regulation. The functional relation between lower activity of gibberellin signaling and reduced disease severity was previously confirmed in Arabidopsis-virus interaction using knockout mutants. We further showed that this regulation is salicylic acid-dependent as the response of sRNA network was attenuated in salicylic acid-depleted transgenic counterpart NahG-Désirée expressing severe disease symptoms. Besides downregulation of gibberellin signaling, regulation of immune receptor transcripts by miR6022 as well as upregulation of miR164, miR167, miR169, miR171, miR319, miR390, and miR393 in tolerant Désirée, revealed striking similarities to responses observed in mutualistic symbiotic interactions. The intertwining of different regulatory networks revealed, shows how developmental signaling, disease symptom development, and stress signaling can be balanced.
Keywords: gibberellin, miRNA/siRNA, plant immunity, potato, Potato virus Y, salicylic acid, symbiosis, tolerance
Published in DiRROS: 25.07.2024; Views: 107; Downloads: 67
.pdf Full text (4,19 MB)
This document has many files! More...

6.
DiNAR: revealing hidden patterns of plant signalling dynamics using Diferential Network Analysis in R
Maja Zagorščak, Andrej Blejec, Živa Ramšak, Marko Petek, Tjaša Stare, Kristina Gruden, 2018, original scientific article

Abstract: Background Progress in high-throughput molecular methods accompanied by more complex experimental designs demands novel data visualisation solutions. To specifically answer the question which parts of the specifical biological system are responding in particular perturbation, integrative approach in which experimental data are superimposed on a prior knowledge network is shown to be advantageous. Results We have developed DiNAR, Differential Network Analysis in R, a user-friendly application with dynamic visualisation that integrates multiple condition high-throughput data and extensive biological prior knowledge. Implemented differential network approach and embedded network analysis allow users to analyse condition-specific responses in the context of topology of interest (e.g. immune signalling network) and extract knowledge concerning patterns of signalling dynamics (i.e. rewiring in network structure between two or more biological conditions). We validated the usability of software on the Arabidopsis thaliana and Solanum tuberosum datasets, but it is set to handle any biological instances. Conclusions DiNAR facilitates detection of network-rewiring events, gene prioritisation for future experimental design and allows capturing dynamics of complex biological system. The fully cross-platform Shiny App is hosted and freely available at https://nib-si.shinyapps.io/DiNAR. The most recent version of the source code is available at https://github.com/NIB-SI/DiNAR/ with a DOI 10.5281/zenodo.1230523 of the archived version in Zenodo.
Keywords: biological networks, clustering, gene expression, time series, dynamic network analysis, dynamic data visualisation, web application, multi-conditional datasets, background knowledge
Published in DiRROS: 24.07.2024; Views: 137; Downloads: 122
.pdf Full text (1,63 MB)
This document has many files! More...

7.
Multiomics analysis of tolerant interaction of potato with potato virus Y
Tjaša Stare, Živa Ramšak, Maja Križnik, Kristina Gruden, 2019, original scientific article

Abstract: Potato virus Y (PVY) is the most economically important viral pathogen of potato worldwide. Different potato cultivars react to the pathogen differently, resulting in resistant, tolerant or disease outcome of the interaction. Here we focus on tolerant interaction between potato cv. Désirée and PVYNTN. To capture the response in its full complexity, we analyzed the dynamic changes on multiple molecular levels, including transcriptomics, sRNAomics, degradomics, proteomics and hormonomics. The analysis was complemented by the measurements of viral accumulation, photosynthetic activity and phenotypisation of the symptoms. Besides cv. Désirée we also studied its transgenic counterpart depleted for the accumulation of salicylic acid (NahG-Désirée). This multiomics analysis provides better insights into the mechanisms leading to tolerant response of potato to viral infection and can be used as a base in further studies of plant immunity regulation.
Keywords: potato cv. Désirée, potato virus Y
Published in DiRROS: 24.07.2024; Views: 108; Downloads: 71
.pdf Full text (2,37 MB)
This document has many files! More...

8.
Interactive exploration of heterogeneous biological networks with Biomine Explorer
Vid Podpečan, Živa Ramšak, Kristina Gruden, Hannu Toivonen, Nada Lavrač, 2019, original scientific article

Abstract: Biomine Explorer is a web application that enables interactive exploration of large heterogeneous biological networks constructed from selected publicly available biological knowledge sources. It is built on top of Biomine, a system which integrates cross-references from several biological databases into a large heterogeneous probabilistic network. Biomine Explorer offers user-friendly interfaces for search, visualization, exploration and manipulation as well as public and private storage of discovered subnetworks with permanent links suitable for inclusion into scientific publications. A JSON-based web API for network search queries is also available for advanced users.
Keywords: biological networks, bioinformatic
Published in DiRROS: 23.07.2024; Views: 134; Downloads: 74
.pdf Full text (294,66 KB)
This document has many files! More...

9.
Enabling reusability of plant phenomic datasets with MIAPPE 1.1
Evangelia A. Papoutsoglou, Daniel Faria, Daniel Arend, Elizabeth Arnaud, Ioannis N. Athanasiadis, Inês Chaves, Frederik Coppens, Guillaume Cornut, Bruno V. Costa, Hanna Ćwiek-Kupczyńska, Kristina Gruden, Živa Ramšak, 2020, original scientific article

Abstract: Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.
Published in DiRROS: 22.07.2024; Views: 110; Downloads: 147
.pdf Full text (1,96 MB)
This document has many files! More...

10.
Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato
Marko Petek, Maja Zagorščak, Živa Ramšak, Sheri Sanders, Špela Tomaž, Elizabeth Tseng, Mohamed Zouine, Anna Coll Rius, Kristina Gruden, 2020, original scientific article

Abstract: Although the reference genome of Solanum tuberosum Group Phureja double-monoploid (DM) clone is available, knowledge on the genetic diversity of the highly heterozygous tetraploid Group Tuberosum, representing most cultivated varieties, remains largely unexplored. This lack of knowledge hinders further progress in potato research. In conducted investigation, we first merged and manually curated the two existing partially-overlapping DM genome-based gene models, creating a union of genes in Phureja scaffold. Next, we compiled available and newly generated RNA-Seq datasets (cca. 1.5 billion reads) for three tetraploid potato genotypes (cultivar Désirée, cultivar Rywal, and breeding clone PW363) with diverse breeding pedigrees. Short-read transcriptomes were assembled using several de novo assemblers under different settings to test for optimal outcome. For cultivar Rywal, PacBio Iso-Seq full-length transcriptome sequencing was also performed. EvidentialGene redundancy-reducing pipeline complemented with in-house developed scripts was employed to produce accurate and complete cultivar-specific transcriptomes, as well as to attain the pan-transcriptome. The generated transcriptomes and pan-transcriptome represent a valuable resource for potato gene variability exploration, high-throughput omics analyses, and breeding programmes.
Published in DiRROS: 22.07.2024; Views: 109; Downloads: 76
.pdf Full text (2,79 MB)
This document has many files! More...

Search done in 0.27 sec.
Back to top