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Multiomics analysis of tolerant 
interaction of potato with potato 
virus Y
Tjaša Stare   1,3*, Živa Ramšak   1,3, Maja Križnik1,2,3 & Kristina Gruden1

Potato virus Y (PVY) is the most economically important viral pathogen of potato worldwide. Different 
potato cultivars react to the pathogen differently, resulting in resistant, tolerant or disease outcome 
of the interaction. Here we focus on tolerant interaction between potato cv. Désirée and PVYNTN. To 
capture the response in its full complexity, we analyzed the dynamic changes on multiple molecular 
levels, including transcriptomics, sRNAomics, degradomics, proteomics and hormonomics. The 
analysis was complemented by the measurements of viral accumulation, photosynthetic activity 
and phenotypisation of the symptoms. Besides cv. Désirée we also studied its transgenic counterpart 
depleted for the accumulation of salicylic acid (NahG-Désirée). This multiomics analysis provides better 
insights into the mechanisms leading to tolerant response of potato to viral infection and can be used as 
a base in further studies of plant immunity regulation.

Background & Summary
Plant pathogens are responsible for up to 30% losses in agriculture1. Viral caused plant diseases affect all major 
crops. Being obligate intracellular organisms, chemical control of these pathogens can only be applied to control 
their insect vectors. Marker-assisted selection breeding of plants that are tolerant or resistant to viruses is an 
alternative option of control. For this strategy, understanding molecular responses of plant immunity is crucial2,3. 
At the molecular level, plant defense mechanisms against viral pathogens are regulated by a network of intercon-
nected signal transduction pathways, which lead to plant metabolism reprogramming4. It is also insufficient to 
analyze plant status snapshots in a single time point and scale, instead, dynamic changes should be monitored on 
multiple molecular levels to understand the underlying mechanisms5,6. With this in mind, we performed multi-
omics analyses of potato (Solanum tuberosum L.) responses following the infection with potato virus Y (PVY).

Potato is the world’s most important non-grain staple crop. Viruses pose a serious threat to potato production, 
not only because of the effects caused by the primary infection, but also because potato is propagated vegetatively 
and the viruses are transmitted through the tubers and accumulate over time7. The most devastating potato virus 
is PVY8, which induces severe symptoms in sensitive potato cultivars, including the development of potato tuber 
necrotic ringspot disease9,10. One of the most widely grown potato cultivars is cv. Désirée, which is in non-stress 
condition tolerant to PVYNTN, meaning that the virus replicates and spreads systemically, however, symptoms of 
the disease are reduced or not visible at all11. Tolerance may have an advantage over resistance for crop protection 
because it does not actively select against virus infection and replication, therefore there is little evolutionary 
pressure for PVY to mutate. Hence, the tolerant phenotype is likely to be more durable than resistance12.

In this study, we performed a comprehensive, time series multiomics analysis of the potato cv. Désirée 
responses to PVYNTN infection11. The response has been analyzed on the levels of transcriptomics, sRNAomics, 
degradomics, proteomics and hormonomics. The analysis was complemented by the measurements of viral accu-
mulation, measurements of photosynthetic activity and symptoms development (Figs 1 and 2). The plants were 
either mock- or PVY- treated and the response was analyzed in infected and systemic (upper noninoculated) 
leaves at different time points, one day before the infection (-1 days post inoculation (dpi)), on the day of infec-
tion (0 dpi) and on the following days after infection: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 11 dpi4,13 (Fig. 1). As salicylic acid 
(SA) was found to be a crucial component for disease symptoms attenuation14, NahG-Désirée transgenic plants, 
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producing salicylate hydroxylase, which catalyzes the conversion of SA to catechol11,15,16, were also included in 
experimental design (Fig. 1).

Plant growth was unaffected in this tolerant interaction. However, in the inoculated leaves virus multiplication 
was detected at 5 dpi onwards and virus spread to upper systemic leaves was detected at 7 dpi. Also, leaf yellowing 
occurred faster in virus-inoculated compared to mock-inoculated plants. SA-depletion rendered NahG-Désirée 
plants more susceptible to PVYNTN infection, which was manifested as faster virus multiplication and appearance 
of strong disease symptoms including spot necroses, vein necroses and chlorotic spots beside more pronounced 
yellowing13. To evaluate dynamic changes in photosynthetic activity, net photosynthesis, stomatal conductance, 
actual photochemical efficiency, potential photochemical activity, chlorophyll content and electron transport rate 
were measured on both mock- and PVY-treated plants of both genotypes13. In both, a decrease in net photosyn-
thesis and stomatal conductivity at 5 dpi was observed, which coincided with the onset of the virus accumulation. 
Additionally, in PVY-infected plants, a transient decrease of photochemical efficiency was observed at 5 dpi.

Transcriptomics measurements of infected potato leaves of both genotypes for both mock- and 
PVY-inoculated plants were performed at 0, 1, 3, 4, 5 and 7 dpi using POCI arrays that are able to capture the 
expression of 84% of the predicted ITAG genes and 72% of predicted PGSC genes. To evaluate dynamics of sys-
temic response, upper untreated leaves were also analyzed at 0, 1, 3, 4, 5, 7, 8, 9 and 11 dpi, for cv. Désirée. Overall, 
high similarities were observed between biological triplicates (Fig. 3). In untreated plants (0 dpi), 384 POCI 
probes were differentially expressed between genotypes (Désirée vs. NahG-Désirée). Infection of potato bottom 
leaves with PVY caused dynamic reprogramming of transcription, 3,572 POCI probes (out of 42,034) were dif-
ferentially expressed over all time points in inoculated leaves of cv. Désirée and 5,649 in NahG-Désirée. The most 
pronounced viral induced changes occurred in Désirée plants at 5 dpi and NahG-Désirée at 1 dpi (Fig. 4b).

Fig. 1  Overview of experimental design and sampling. (a) Plant scheme, indicating the nomenclature for leaves 
(1B – first bottom, 2B – second bottom, 3B – third bottom; 1U – first upper, 2U – second upper, 3U – third 
upper leaf). (b) Leaf sampling scheme, where for each leaf, two lamina samples were collected. (c) For each 
measurement method, indication of which day post infection (DPI) the samples were collected is given.
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Plant response on the small RNA (sRNA) level was analyzed at 3 dpi in mock- and PVY-inoculated bottom 
leaves of both genotypes. We identified 249 previously described plant (Viridiplantae) microRNAs (miRNAs) 
belonging to 96 miRNA families. In addition, 186 novel miRNAs (from 155 MIR loci), 1,513 phased small inter-
fering RNAs (phasiRNAs; from 482 PHAS loci) and more than 46,000 PVY-derived siRNAs (vsiRNAs) were 
identified. In total, 97 unique sRNAs were found to be significantly differentially expressed between mock- and 
PVY-infected Désirée plants. In NahG-Désirée only 28 miRNAs were differentially expressed, with the majority 
showing a lower degree of induction than in Désirée plants13. Depletion of SA thus attenuates the response of 
potato cv. Désirée to PVY on the sRNA level.

Degradome-Seq was performed on the samples collected 3 dpi, for this analysis biological replicates were 
pooled. This data complemented the in silico predictions for identification of sRNA target transcripts and to 
construct sRNA regulatory network13. By combining expression changes of sRNAs and their target transcripts, 
92 interaction pairs with the negatively correlated expression pattern were identified13. In addition to previ-
ously described regulation of immune receptor transcript, a novel connection between sRNAs and gibberellin 
biosynthesis was discovered, linking immune and developmental signaling pathways17. The cumulative effect 
of sRNAs-mediated regulation of gibberellin biosynthesis genes was also confirmed by hormonal content 
measurements13.

Proteomics measurements, using liquid chromatography coupled to Orbitrap LTQ XL mass spectrometer, 
were performed in mock- and PVY-inoculated bottom leaves samples of both genotypes, collected at 4 dpi. Two 
approaches for peptide and protein identification and quantification were applied: 339 proteins were identified 
with spectral counting, and 250 with MaxQuant approach13. The number of identified proteins is limited as we 
have applied an approach that has not involved any subsampling prior to analysis thus the majority of identified 
spectra corresponded to Ribulose-1,5-bisphosphate carboxylase oxygenase which is by far the most prevalent 
protein in plant leaves (30–50%). From either approaches, 21 proteins showed significantly altered changes in 
their abundance in response to viral infection.

Methods
Plant material.  Potato (Solanum tuberosum L.) cv. Désirée and transgenic potato plants expressing SA 
hydroxylase (NahG-Désirée) were propagated in tissue culture. The plantlets were re-propagated every 6 weeks 
until stem nodes were transferred to MS30 media for rooting. Two weeks after node segmentation, the plantlets 
were transferred to soil. Throughout the experiment, tissue culture-, as well as soil-grown plants were kept in a 
growth chamber with a 16-h photoperiod. Tissue culture growth chamber was set to 19 °C overnight temperature 
and 21 °C day temperature with 90% humidity in both periods. Soil growth chambers were set to 22 °C and 70% 
relative humidity during the day and 20 °C with 65% relative humidity overnight. The exact growth conditions 
during the 16-h light period were measured by a Li-6400 (LiCor, Lincoln, USA): light intensity 125 μmol m−2 
s−1, temperature 25 °C, 700 µmol CO2 mol−1, and relative humidity 65–75%. After 4 weeks of growth in soil, the 
potato plants were inoculated with the sap of healthy (mock) or the sap of PVYNTN (isolate NIB-NTN, AJ585342) 
infected potato cv. Pentland grown in tissue culture. Three bottom leaves were dusted with carborundum powder 
and rubbed with the sap. After 10 min, leaves were extensively washed with tap water.

For transcriptomics, sRNAomics, degradomics and proteomics measurements three inoculated leaves (bot-
tom, abbreviated as B, Fig. 1) were sampled at 1, 3, 4, 5 and 7 dpi. Inoculated leaves could not be collected at later 
time points due to leaf-drop. The three systemic leaves (upper, abbreviated as U, Fig. 1) were sampled at 1, 3, 4, 
5, 7, 8, 9 and 11 dpi. The first systemic leaf was the one directly above the first (oldest) inoculated leaf (Fig. 1). 
Sampling of untreated plants was done for both genotypes (Désirée, NahG-Désirée) and they were designated 
as untreated control (0 dpi). Additional plants were either mock- or PVY-treated and analysis of photosynthetic 
activity was performed from -1 dpi to 11 dpi in inoculated and systemic leaves for both genotypes. For hormon-
ome analysis an additional set of Désirée and NahG-Désirée plants was grown. Two bottom leaves per plant were 
inoculated. Leaf samples from four different mock- and PVY-inoculated plants of Désirée and NahG-Désirée 
were collected in eight consecutive time points (0–7 dpi).

Fig. 2  Examples of observed phenotypes in potato cv. Desiree-PVYNTN interaction during the course of the 
experiment. (a) Leaf with slight mechanical damage. (b) Leaf exhibiting spot and vein necrosis and yellowing. 
(c) Leaf exhibiting yellowing.
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All the sample information, with corresponding MIAPPE description of the experiment is given at 
FAIRDOMHub under the investigation “MOA - Multiomics analysis of potato response to Potato virus Y (PVY) 
infection”13.

Transcriptomic analysis.  For transcriptomic analysis, we sampled the first bottom (1B) leaves of Désirée 
and NahG-Désirée plants (1, 3, 5, and 7 dpi) and the first upper (1U) leaves of non-transgenic Désirée (1, 3, 5, 
7, 8, 9 and 11 dpi). Total RNA from the inoculated leaves was extracted, DNase treated, purified, and quality 
controlled as described previously18. A one-color based hybridization protocol was performed on the custom 
60-mer oligo microarrays (4 × 44 K; AMADID 015425) designed by the Potato Oligo Chip Initiative19. For each 
sample, at least 1 μg total RNA was used and sent for analysis at IMGM Laboratories GmbH, Germany. The raw 

Fig. 3  Overview of responses on the transcriptomics level (microarray data). Heatmap showing hierarchical 
clustering of transcriptome microarray samples using the Pearson correlation coefficient (PCC) as a distance 
measure, without reordering. High similarities can be observed between similar biological conditions and three 
biological conditions (heatmap diagonal). Actual PCC values were all higher than 0.85, even for the samples 
colored in blue (n = 118).
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data were analyzed in R (R Development Core Team, 2011; version 2.13.2)), using the Agi4x44PreProcess20 and 
limma packages21.

The microarray features were filtered according to the Agilent quality control flags: if the feature was deter-
mined to be well above background (feature signal standard deviation (SD) was greater than 2.6 of it’s surround-
ing background SD; IsNOTWellAboveBG20) and if the feature was not saturated (<50% of the pixels were below 
the saturation threshold; IsSaturated20). If in at least 10% of the total microarray count (11) the feature’s flag was 
ok, then it was retained for further analysis. Raw data of the remaining 37.865 (from a total of 42.034) features was 
robust spline normalized (rsn22). The empirical Bayes method23 was used to detect differentially expressed genes 
between mock- and PVY-inoculated plants at each time point and for each genotype (Benjamini and Hochberg’s24 
(FDR) adjusted p ≤ 0.05).

sRNAomics.  For sRNA analyses, second bottom inoculated leaves were sampled at 3 dpi, which corresponds 
to early stages of viral multiplication for both genotypes and before symptoms development in NahG-Désirée 
plants. Total RNA was extracted from 100 mg of homogenized leaf tissue using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) and MaXtract High Density tubes (Qiagen, Hilden, Germany) following manufacturers’ pro-
tocols. RNA concentration, quality and purity were assessed using agarose gel electrophoresis and NanoDrop 
ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). sRNA NGS libraries were generated 
from total RNA samples using the TailorMix miRNA Sample Preparation Kit (SeqMatic LLC, Fremont, CA, USA) 
and subjected for 50 bp single-end sequencing on the Illumina HiSeq 2000 Sequencing System at SeqMatic LLC.

Fig. 4  Comparison of transcriptomics responses in potato-PVY interaction through time. (a) Venn diagrams of 
differentially expressed (DE) genes in three different genotype/leaf type combinations (Désirée bottom, NahG-
Désirée bottom and Désirée upper leaves) and for two normalisations (RNS and quantile). (b) Venn diagrams 
of differentially expressed (DE) genes in virus versus mock treated plants in bottom leaves of cv. Désirée and 
NahG-Désirée genotypes at 1, 3, 4, 5 and 7 dpi. (c) DE genes for upper non-inoculated leaves are shown for 
Désirée plants at 1, 3, 4, 5, 7, 8, 9 and 11 dpi. The values represent statistically significant differentially expressed 
genes as determined by empirical Bayes method (n = 3, FDR p-value < =0.05, |logFC| > =0.8). (d) Coverage of 
the two potato genome models (ITAG, PGSC) by the POCI microarray features.
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The raw sRNA sequencing reads were first trimmed to remove adaptor sequences using CLC Genomics 
Workbench 8 (https://www.qiagenbioinformatics.com/products/clc-genomics-workbench) and further filtered 
according to quality with Filter Tool (UEA sRNA Toolkit)25 by discarding low complexity reads (containing at 
most two distinct nucleotides), reads shorter than 18 nt and longer than 25 nt, reads matching tRNA/rRNA 
sequences and reads not mapped to the potato genome (PGSC_DM_v4.3)26. To identify known annotated miR-
NAs, the remaining reads were compared to all plant miRNAs registered in the miRBase database (release 2127), 
allowing no mismatches. The sequences that matched mature miRNAs from other plants than potato (miRNA 
orthologs), were mapped to the potato genome to find corresponding MIR loci able to form a hairpin struc-
ture28 and named according to the annotation of conserved miRNA29. miRNAs that had different 5′ and 3′ ends 
with respect to the mature miRNA, were annotated as miRNA variants (isomiRs). To identify novel unanno-
tated miRNAs, filtered reads were submitted to miRCat tool (UEA sRNA Toolkit)25 using default parameters 
for plants, considering only reads of lengths 18–24 nt. Reads were first mapped to the potato genome26, then 
the 100 and 200 nt long windows around the aligned reads were extracted28. The predicted secondary structures 
were trimmed and analyzed to verify the characteristic hairpin pre-miRNA structure according to plant miRNAs 
annotation criteria29. An additional criterion we have imposed was, that novel miRNAs should be present at least 
in two analyzed samples with more than five raw reads. Potential novel miRNAs were mapped against miRBase 
and sequences that matched known plant miRNAs with up to three mismatches were excluded. The novelty of 
potato specific miRNAs was verified by comparison with the miRPlant version 528 using default parameters and 
additionally rechecked against the latest releases of Rfam30, tRNA31 and snoRNA32 databases. Families of novel 
miRNAs were determined by clustering their precursor (pre-miRNA) sequences with pre-miRNAs of annotated 
known miRNAs from miRBase using CD-HIT-EST33 with an identity threshold of 0.9. The sequences showing 
similarities with annotated pre-miRNAs were grouped into corresponding known miRNA family, and sequences 
that did not show similarity with known plant miRNAs, were classified as novel miRNA families.

Prediction of phasiRNAs and phasiRNA-producing loci (PHAS loci) was performed using ta-siRNA pre-
diction tool25,34; utilizing the potato genome26 and the merged potato gene and unigene sequences StNIB_v135. 
Analysis of phasing was performed in 21- and 24-nt intervals. To detect PHAS loci with a significant degree 
of phasing, very strict criteria were applied to avoid detection of false positives (phasing Bonferroni corrected 

Desiree Desiree-NahG

dpi1 dpi3 dpi4 dpi5 dpi7 dpi1 dpi3 dpi4 dpi5 dpi7

μarray qPCR μarray qPCR μarray qPCR μarray qPCR μarray qPCR μarray qPCR μarray qPCR μarray qPCR μarray qPCR μarray qPCR

CAB

cSTD1O21THB 1.4 0.3 0.3 −0.4 1.1 1.3 −0.5 0.4 0.1 2.1 1 −0.8 0.1 0 0 −0.6 0.2 1.3 −0.1 0.6

MICRO.331.C90 0.1 0 0.5 0.1 −0.1 −0.1 −0.1 0 0.2 0

MICRO.331.C84 1.2 0.6 0.6 −0.6 −0.6 −1.1 −0.5 −1.4 −0.7 −1

MICRO.331.C81 3.5 2.9 2.7 3.3 3 −0.8 −0.5 0.6 0.5 −0.8

MICRO.331.C62 0.9 0.8 0.8 0.8 0.2 −0.9 0.1 0 0.2 −0.3

MICRO.331.C60 0.2 −0.1 1.8 −0.1 −0.3 −0.4 0.2 −0.6 0.5 0

MICRO.331.C89 1.1 −0.4 2.3 −0.9 0.2 −1.4 1.2 0.3 1.6 0.7

MICRO.331.C79 0.6 −0.1 2.2 −0.5 −0.4 −0.3 −0.2 −1.8 0.4 0.1

MICRO.331.C76 0.9 −0.2 1.4 −0.6 −0.3 0.7 −0.1 −0.1 0.3 0.3

MICRO.331.C27 1.7 0.3 2.5 −0.1 1.3 −1.7 0.8 1 1.3 0.4

MICRO.331.C12 0.8 0.7 0.5 0.1 0.1 0.8 0 0.4 0.4 −0.4

MICRO.331.C9 0.5 0.1 1.8 −0.1 0.1 0.3 0.5 0.4 0.8 0.3

INV STMIM75TV −0.6 −0.6 0.3 0 0 −1 0.1 −1.7 0.5 1 0.4 1.1 −0.5 1 1.4 1.1 1.5 2.2 1.8 1.7

GBSS1
MICRO.920.C5 0.2 0.4 −0.3 0.4 0.3 0.9 −1.4 −0.8 −0.3 0.3 −0.5 −2.1 0 −0.3 −1.3 −1.5 −0.3 −0.3 −0.5 −0.1

MICRO.920.C2 0.3 −0.4 0.7 −1.5 0 −0.4 0.1 −1.4 −0.2 −0.4

Glu-I MICRO.2526.C3 0.2 1.5 −0.1 −0.2 0 1.8 −0.2 −0.6 0.1 1.8 0.3 4.5 0.2 0.6 0.3 2.8 0.1 2.2 0.4 3

Glu-II

MICRO.2286.C42 −0.6 −0.3 −0.7 −0.6 0.1 0.7 −0.6 −1.7 −0.2 −1.2 0.4 −0.2 −0.7 2.4 −0.8 −1.4 2.1 2.5 3.7 4.3

MICRO.2286.C28 0 −0.2 0.5 0.1 0.7 −0.7 0.5 0 0.6 −0.5

MICRO.2286.C15 −0.3 −0.7 0.2 −0.9 −0.1 0.7 −0.8 −0.9 1.8 3.9

MICRO.2286.C1 0 0 0 0.1 0.2 0 0.2 0.4 0.3 −0.1

Glu-III
MICRO.6187.C2 −0.4 −0.5 −0.3 −0.5 0.4 0.5 0.2 −1 0.4 −0.4 −0.3 −0.2 −1.1 −0.5 1.4 0.5 3.6 3.1 3.9 4.6

MICRO.6187.C1 −0.4 −0.2 0.9 −0.1 0.4 0.1 −1.8 0.6 3.8 4.5

PR1b MICRO.5426.C4 −0.2 −0.6 −1.7 −0.8 0.5 1.3 −1.3 −1.6 1.3 1.5 −1.2 −3.8 −2.3 −2 −0.4 0 4.4 5.6 5.9 5.4

RA MICRO.4141.C1 0.2 −0.6 −0.4 −1 −0.4 −0.6 −1.3 −1.5 −1.7 −1.8 0.6 −0.9 −0.3 −0.4 −1 −0.9 −0.4 0.5 −0.1 0.8

Table 1.  Validation of microarray results by RT-qPCR. Microarray results were validated by analyzing eight 
biologically relevant genes coding for proteins involved in photosynthesis (chlorophyll a-b binding protein: 
CAB and RuBisCO activase: RA), defense response (β-1,3-glucanase of three classes: Glu-I, Glu-II, Glu-III and 
pathogenesis-related protein1b: PR-1b), and sugar metabolism (granule bound starch synthase I: GBSSI and 
INV: cell wall invertase) by quantitative real-time PCR. Expression values were log2 transformed, and a fold-
change difference (log2FC) was calculated for PVYNTN versus mock in cv. Désirée and NahG-Désirée at 1, 3, 4, 5 
and 7 dpi are shown in the table. Statistically significant values (p < 0.05) are marked with bold.
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p-value < 0.05; the number of unique phasiRNAs detected at specific PHAS locus ≥ 4, also to avoid detection of 
repeat-associated siRNAs). To identify siRNA generated from viral RNA (i.e. vsiRNAs), reads of lengths 20–24 
nt from all PVYNTN-infected samples were mapped to the reconstructed consensus PVYNTN genome36 using CLC 
Genomics Workbench version 8 (http://www.clcbio.com/) allowing only 100% identity.

Differential expression analysis was performed in R (R Development Core Team, 2011; version 3.2.2), using 
the limma package21. In short, sRNA counts with a baseline expression level of at least one reads per million of 
mapped reads (RPM) in at least three samples were TMM-normalized (edgeR package37) and analyzed using 
voom function38. To identify differentially expressed sRNAs the empirical Bayes approach was used and the 
resultant p-values were adjusted using the FDR method. Adjusted p-values below 0.05 were considered statisti-
cally significant.

Quantitative real-time PCR analysis.  Relative concentration of the PVYNTN RNA39 and expression of 
genes encoding proteins involved in photosynthesis (RuBisCO activase (RA) and chlorophyll a-b binding protein 
(CAB and CAB_NEW), sugar metabolism (granule-bound starch synthase I (GBSSI), β-1,3-glucanases (GluI), 
(GluII), (GluIII), cell wall invertase (INV) and pathogenesis-related protein 1b (PR-1b) were analyzed using 
RT-qPCR. Cytochrome oxidase (cox40) and 18S rRNA (Eukaryotic 18S rRNA TaqMan endogenous control; 
Applied Biosystems, Carlsbad, CA, USA) were used as endogenous controls. Newly designed primers and probes 
were designed as described in18. Analysis was performed with the same RNA samples as for microarray analysis. 
DNase-treated (Invitrogen; 0.1 U/DNase per µg RNA) total RNA (1–2 µg) was reverse transcribed using High 
Capacity cDNA Reverse Transcription kits (Applied Biosystems) as described18. The samples were analyzed in 
the set-up for RT-qPCR as previously described41, in 5 µl reactions using SYBR Green or TaqMan chemistry. The 
details on primer and probes are given according to MIQE standards13. The standard curve method was used for 
relative gene expression quantification. The transcript accumulation of each gene was normalized to the average 
expression of cox and 18S rRNA11.

The expression level of six differentially expressed miRNAs; stu-miR390-5p, stu-miR398a-5p, stu-miR408b-5p, 
stu-miR4376-5p.1, stu-miR6022-3p and stu-miR827-5p was quantified in relation to the endogenous control 
miRNA (stu-miR167a-5p.1)17. TaqMan MicroRNA Assays (Thermo Fisher Scientific) were designed based on 
the sRNA-Seq sequence of the selected miRNAs. The details on primer and probes are given according to MIQE 
standards13. Total RNA (1 µg) of the same samples as used for sRNA-Seq was DNase I (Qiagen) treated and 
reverse transcribed using SuperScript III First-Strand Synthesis System and stem-loop Megaplex primer pool 
(both Thermo Fisher Scientific) following the manufacturer’s protocol and previously optimized cycling param-
eters42. Three different negative controls were included: no template control RT reactions (to assess potential 
Megaplex primer pool background), RT-minus controls (to check the presence of the signal that could be the 
result of contaminating DNA) and no template qPCR control reactions (to control for the contamination of the 
PCR reagents). All controls were negative. qPCR reactions were performed in 10 µl volume on the LightCycler480 
(Roche Diagnostics Ltd., Rotkreuz, Switzerland) in duplicates and two dilutions (8- and 80-fold) per sample using 
TaqMan Universal Master Mix II, no UNG (Thermo Fisher Scientific) and TaqMan MicroRNA Assays following 
the manufacturer’s protocols. Additionally, for each miRNA assay, a standard curve was constructed from a serial 
dilution of the pool of all samples. Raw Cq values were calculated using the second derivative maximum method 
(Roche Diagnostics Ltd.) and miRNA expression was quantified using a relative standard curve method by nor-
malization to the endogenous control using quantGenius43. The statistical significance was assessed by Student 
t-test.

sRNA target prediction, degradomics and regulatory network construction.  In silico identifica-
tion of potato transcripts targeted by identified sRNAs was performed using the psRNATarget44, and StNIB_v135 
sequences as a reference, following previously proposed stringent parameters45. Targets of identified sRNAs 
were experimentally validated with a parallel analysis of RNA ends (PARE) Degradome-Seq Four degradome 

Fig. 5  Validation of sRNA-Seq results by stem-loop RT-qPCR. The log2 ratios of expression of six miRNAs in 
PVYNTN-infected samples versus mock-inoculated samples of potato cv. (a) Désirée or (b) NahG-Désirée as 
determined by sRNA-Seq (dark grey) or RT-qPCR (light grey). The expressions of miR827 and miR4376 in 
NahG-Désirée samples were under the limit of quantification. Asterisks indicate statistically significant changes 
as determined by Student t-test (n = 3; **p-value < 0.05; *p-value < 0.1). miR390 – stu-miR390-5p; miR398 –  
stu-miR398a-5p; miR408 – stu-miR408b-5p; miR4376 – stu-miR4376-5p.1; miR6022 – stu-miR6022-3p; 
miR827 – stu-miR827-5p. See Methods for details of the experimental procedure.

https://doi.org/10.1038/s41597-019-0216-1
http://www.clcbio.com/


8Scientific Data |           (2019) 6:250  | https://doi.org/10.1038/s41597-019-0216-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

libraries were constructed by pooling RNA of the biological replicates used in sRNASeq and sequenced on the 
Illumina HiSeq 2500 platform13. The Degradome-Seq data were analyzed at LC Sciences (Houston, TX, USA) 
with CleaveLand446) using all our experimentally identified sRNAs and the StNIB_v1 transcript sequences allow-
ing for a maximum of three mismatches. All identified degradation targets were classified into 5 categories as 
previously described46. Category ‘0’ is defined as >1 raw read at the position, with abundance at a position equal 
to the maximum on the transcript, and with only one maximum on the transcript. Category ‘I’ is described as >1 
raw read at the position, with abundance at the position equal to the maximum on the transcript, and more than 
one maximum position on the transcript. Category ‘II’ includes >1 raw read at the position and abundance at 
the position less than the maximum but higher than the median for the transcript. Category ‘III’ comprised the 
transcripts with >1 raw read at the position, and abundance at the position equal to or less than the median for 
the transcript. Category ‘IV’ comprised transcripts with one raw read at the cleavage position. Only categories 
with high confidence of cleavage (0, I, II, III) were considered for biological interpretation.

To evaluate the influence of sRNAs on mRNA abundance, we compared the expression of sRNAs with 
the expression of their target transcripts. All sRNAs and their targets, obtained by in silico prediction and 
Degradome-Seq were integrated with their expression data and used for the construction of regulatory networks 
in Cytoscape 3.413,47.

Proteomics analysis.  For proteomics analysis, the second and third bottom leaves (2B, 3B) of mock- or 
PVY-inoculated plants of both genotypes were sampled at 4 dpi and pooled into 12 samples13. Plant material 
(100 mg) was powdered in liquid nitrogen and proteins were extracted from it with TRIzol mini-protocol48. 
Bradford assay49 was used to determine protein concentrations in the extracts, from which proteins (200 μg) 
were subjected to digestion and desalting50. Protein digest (0.5 µg) was loaded onto a Peptide ES-18 column 
(15 cm × 0.1 mm; 2.7 µm; Sigma-Aldrich, MO, USA) with a one-dimensional nano-flow LC system (UltiMate 
3000, Thermo Fisher Scientific) coupled to an Orbitrap LTQ XL mass spectrometer (Thermo Fisher Scientific), 
operated in data-dependent mode. Peptides were eluted using a 60-min gradient from 5% to 80% acetonitrile/ 
0.1% formic acid, with a controlled flow rate of 0.3 nL per min50.

The proteins were identified using the SEQUEST algorithm51 and Proteome Discoverer (v 1.3, Thermo Fisher 
Scientific). In silico peptide lists were generated with trypsin as the digestion enzyme, allowing for a maximum of 
three missed cleavages. Mass tolerance was set to 5 ppm for precursor ions and 0.8 Da for fragment ions. Peptides 
were identified by comparison to reference transcriptome StNIB_v135. Additionally, a decoy database containing 
reversed sequences was used to estimate the false discovery rate (FDR). Only high confidence (FDR corrected 
p-value ≤ 0.01) peptide identifications with a minimum XCorr of 2.0, and proteins with at least two distinct 
peptides were considered as identified. For quantification, two approaches were used. In the first, spectral count 
information (Proteome Discoverer), missing values of unidentified proteins in the sample were imputed as half of 
the minimum protein expression value across all samples52. The second approach was the label-free quantification 
(LFQ) data matrix of MaxQuant software (v1.5.3.8)53. Differentially abundant proteins were determined using 
Student t-test (p < 0.05).

Hormone measurements.  For hormone measurements, the second bottom leaves (2B) of mock- or 
PVY-inoculated plants from both genotypes were sampled from 0–7 dpi in 4 replicates. Concentration of seven 
different plant hormones (ABA, GA3, OPDA, JA, IAA and SA) was determined by gas chromatography cou-
pled with mass spectrometry (GC-MS). Tissue samples (~100 mg) were homogenized using a Tissue Lyser 
(Qiagen) and stainless steel beads (Qiagen) at −80 °C. A mixture of 1 ml of 100% methanol with 50 pmol of 
stable isotope-labelled internal standards was added to each sample. The samples were first heated (60 °C, 5 min) 
and then incubated at room temperature with occasional vortexing for 1 h. After centrifugation the methanolic 
phase was vacuum dried. The resulting residue was dissolved in combination of methanol (50 μl) and diethyl 
ether (200 μl). The samples were sonified (5 min) and centrifuged (5 min, 14,000 g). The particle-free super-
natant was loaded to aminopropyl solid-phase extraction cartridges (Chromabond NH2; Macherey-Nagel 
GmbH, Düren, Germany). Each cartridge was washed twice with CHCl3:2-propanol (2:1, v/v, 250 μl) before the 
hormone-containing fraction was eluted with acidified diethyl ether (2% acetic acid, v/v, 400 μl). The eluates 
were transferred into 0.8 ml autosampler vials and dried. Prior to GC-MS analysis, the samples were derivatized 
with a 20 μl of a mix of acetone:methanol (9:1, v/v, 220 μ), diethyl ether (27 μl) and (trimethylsilyl)diazomethane 
solution (2.0 M in diethyl ether, 3 μl) and incubated at room temperature for 30 min. Settings for the GC-MS were 

Fig. 6  Intersection between Degradome-Seq and in silico predictions of sRNA-target cleavage interactions.
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as described previously54. For the determination of endogenous and stable isotope-labeled methylated acidic 
plant hormones, respectively, the following ion transitions were recorded: MeSA m/z 152 to m/z 120 and m/z 
156 to m/z 124 for [2H4]-MeSA, retention time 6.75 ± 0.4 min; MeOPDA m/z 238 to m/z 163 and m/z 243 to m/z 
168 for [2H5]-MeOPDA, retention time 10.00 ± 0.4 min; MeJA m/z 224 to m/z 151 and m/z 229 to m/z 154 for 
[2H5]-MeJA, retention time 11.27 ± 0.5 min; MeIAA m/z 189 to m/z 130 and m/z 191 to m/z 132 for [2H2]-MeIAA, 
retention time 13.34 ± 0.4 min; MeABA m/z 162 to m/z 133 and m/z 168 to m/z 139 for [2H6]-MeABA, reten-
tion time 15.78 ± 0.4 min; and MeGA m/z 136 to m/z 120 and m/z 138 to m/z 122 for [2H2]-MeGA, retention 
time 21.67 ± 0.6 min. The amounts of endogenous hormone contents were calculated from the signal ratio of the 
unlabeled over the stable isotope-containing mass fragment observed in the parallel measurements13. Significant 
changes for a set of hormones between treatment-genotype groups were determined by ANOVA followed by LSD 
post hoc analysis (FDR < 0.05) using the Agricolae R package13.

Gas exchange and fluorescence measurements.  Measurements of photosynthesis performance 
were taken between 9:00 and 11:00 AM on six plants of each treatment group (mock-inoculated Désirée, 
mock-inoculated NahG-Désirée, PVY-inoculated Désirée, PVY-inoculated NahG-Désirée), starting one day 
before inoculation (−1 dpi). The two bottom inoculated leaves (at 0, 1, 3, 4, 5, 7, 8 and 11 dpi) and two upper sys-
temic leaves (at 1, 3, 4, 5, 7, 8 and 11 dpi) per plant were examined for each treatment group. Measurements were 
taken with a Li-6400 (LiCor, Lincoln, USA) measuring system equipped a 6400–40 Leaf Chamber Fluorometer. To 
perform measurements under the conditions that suit growing conditions, the chamber was mounted on a small 
tripod and positioned on a shelf of the growth chamber. At each measurement, the leaf was enclosed in the cham-
ber and left to achieve a steady-state response, then a saturating light pulse was triggered to induce fluorescence, 
and in parallel, the gas-exchange data were stored. The data on net photosynthesis (Pn), stomatal conductance 
(Cond), actual photochemical efficiency (Fv’/Fm’), potential photochemical activity (Fv/Fm), chlorophyll content 
(SPAD) and electron transport rate (ETR) of mock- and PVY-inoculated plants. Statistical model matrix was set 
to define contrasts as differences in mock normalized values between consecutive time points for each genotype13.

Data Records
The complete Investigation has been deposited to FAIRDOMhub13. Microarray, sRNA-Seq and Degradome-Seq 
data can be accessed at the NCBI’s Gene Expression Omnibus repository55–57. Proteomics data are available via 
ProteomeXchange with identifier PXD01522158.

Technical Validation
RT-qPCR assays used in this study.  qPCR assays: RT-qPCR assay targets for mRNA quantification are 
specified, together with their gene IDs, sequences of primers (Fw, Rw) and probe (P) and assay efficiencies. 
miRNA assays: TaqMan MicroRNA Assays, ordered according to the sRNA-Seq sequence of the selected miRNAs 
together with their IDs, mature miRNA sequence and efficiency of amplification13.

Validation of microarray results by RT-qPCR.  Microarray results were validated by quantitative 
real-time PCR (RT-qPCR). Eight biologically relevant genes were analyzed: for photosynthesis genes encod-
ing chlorophyll a-b binding protein (CAB, CAB_NEW) and RuBisCO activase (RA); for defense response genes 
coding for three classes of β-1,3-glucanases (Glu-I, Glu-II, Glu-III) and pathogenesis-related protein1b (PR-1b); 
and for sugar metabolism granule-bound starch synthase I (GBSSI) and cell wall invertase (INV) genes. Pearson 
correlation between the results of both methods (microarrays, RT-qPCR) was high (0.74; Table 1).

miRNA stem-loop RT-qPCR for sRNA-Seq data validation.  sRNA expression results obtained by 
sRNA-seq were validated by stem-loop RT-qPCR. For validation experiments, the same RNA samples as used 
for sRNA-Seq were analyzed. As previously described in Križnik et al.17, using RT-qPCR analysis we validated 
all sRNA-Seq differential expression results except in cases were concentrations of miRNAs were below the limit 
of the quantification. Pearson correlation between the results of both methods (sRNA-Seq, stem-loop RT-qPCR) 
was very high (0.92; Fig. 5).

Degradome-Seq for sRNA target validation.  Degradome-Seq was used to validate miRNA-target 
pairs in silico predicted by the psRNATarget tool44. Degradome-Seq experimentally identified 3,015 unique 
sRNA-target cleavage pairs, between 1,042 unique sRNAs and 1,663 unique target mRNAs. psRNATarget tool 
predicted 36,750 different unique sRNA-target pairs between 1,960 potato sRNAs and 15,000 non-redundant 
potato mRNA targets. The majority of predicted interactions (29,336; ~80%) were predicted as cleavage type 
interactions.

Comparison between both by in silico and experimental target prediction revealed 113 commonly identi-
fied sRNA-target pairs (Fig. 6). Among them, 24 were miRNA-target pairs and 89 were phasiRNA-mRNA 
pairs. Most verified miRNA-target interactions resulting in mRNA degradation were highly conserved 
miR160-ARF10/ARF17, miR172-APETALA2, miR319-TCP, miR393-TIR1, miR396-GRF modules. The limited 
number of sRNA-target pairs predicted with both approaches are most probably related to differences in predic-
tion parameters employed within in silico or Degradome-Seq analysis (i.e. Cleaveland pipeline46). Hence, negative 
expression correlations between sRNAs and their target genes were used to biologically characterize the identified 
interactions.

Code availability
The code used for analysis of microarray data and differential expression for microarray sRNAomics and 
hormonomics data is available at FAIRDOMHub13 for project MOA on the corresponding Experimental Assay 
subsections.
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