Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (marine biology) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Katja Klun, Tinkara Tinta, 2024, original scientific article

Abstract: Measurements of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) concentrations are used to characterize the dissolved organic matter (DOM) pool and are important components of biogeochemical cycling in the coastal ocean. Here, we present the first edition of a global database (CoastDOM v1; available at https://doi.org/10.1594/PANGAEA.964012, Lønborg et al., 2023) compiling previously published and unpublished measurements of DOC, DON, and DOP in coastal waters. These data are complemented by hydrographic data such as temperature and salinity and, to the extent possible, other biogeochemical variables (e.g. chlorophyll a, inorganic nutrients) and the inorganic carbon system (e.g. dissolved inorganic carbon and total alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all continents. However, most data were collected in the Northern Hemisphere, with a clear gap in DOM measurements from the Southern Hemisphere. The data included were collected from 1978 to 2022 and consist of 62 338 data points for DOC, 20 356 for DON, and 13 533 for DOP. The number of measurements decreases progressively in the sequence DOC > DON > DOP, reflecting both differences in the maturity of the analytical methods and the greater focus on carbon cycling by the aquatic science community. The global database shows that the average DOC concentration in coastal waters (average ± standard deviation (SD): 182±314 µmolC L−1; median: 103 µmolC L−1) is 13-fold higher than the average coastal DON concentration (13.6 ± 30.4 µmol N L−1; median: 8.0 µmol N L−1), which is itself 39-fold higher than the average coastal DOP concentration (0.34 ± 1.11 µmol P L−1; median: 0.18 µmol P L−1). This dataset will be useful for identifying global spatial and temporal patterns in DOM and will help facilitate the reuse of DOC, DON, and DOP data in studies aimed at better characterizing local biogeochemical processes; closing nutrient budgets; estimating carbon, nitrogen, and phosphorous pools; and establishing a baseline for modelling future changes in coastal waters.
Keywords: global database, dissolved organic matter, coastal waters, marine biology
Published in DiRROS: 17.05.2024; Views: 0; Downloads: 0
URL Link to file
This document has many files! More...

2.
Annual recurrence of prokaryotic climax communities in shallow waters of the North Mediterranean
Mauro Celussi, Vincenzo Manna, Elisa Banchi, Viviana Fonti, Matteo Bazzaro, Vesna Flander-Putrle, Katja Klun, Martina Kralj, Neža Orel, Tinkara Tinta, 2024, original scientific article

Abstract: In temperate coastal environments, wide fluctuations of biotic and abiotic factors drive microbiome dynamics. To link recurrent ecological patterns with planktonic microbial communities, we analysed a monthly-sampled 3-year time series of 16S rRNA amplicon sequencing data, alongside environmental variables, collected at two stations in the northern Adriatic Sea. Time series multivariate analyses allowed us to identify three stable, mature communities (climaxes), whose recurrence was mainly driven by changes in photoperiod and temperature. Mixotrophs (e.g., Ca. Nitrosopumilus, SUP05 clade, and Marine Group II) thrived under oligotrophic, low-light conditions, whereas copiotrophs (e.g., NS4 and NS5 clades) bloomed at higher temperatures and substrate availability. The early spring climax was characterised by a more diverse set of amplicon sequence variants, including copiotrophs associated with phytoplankton-derived organic matter degradation, and photo-auto/heterotrophic organisms (e.g., Synechococcus sp., Roseobacter clade), whose rhythmicity was linked to photoperiod lengthening. Through the identification of recurrent climax assemblages, we begin to delineate a typology of ecosystem based on microbiome composition and functionality, allowing for the intercomparison of microbial assemblages among different biomes, a still underachieved goal in the omics era.
Keywords: marine microbial ecology, coastal seas, microbial community analyses, marine biology, marine ecology
Published in DiRROS: 17.05.2024; Views: 3; Downloads: 1
URL Link to file
This document has many files! More...

3.
Exploring the mesoscale connectivity of phytoplankton periodic assemblages' succession in northern Adriatic pelagic habitats
Ivano Vascotto, Fabrizio Bernardi Aubry, Mauro Bastianini, Patricija Mozetič, Stefania Finotto, Janja Francé, 2024, original scientific article

Abstract: An appropriate model for phytoplankton distribution patterns is critical for understanding biogeochemical cycles and trophic interactions in the oceans and seas. Because phytoplankton dynamics in coastal waters are more complex due to shallow depth and proximity to land, more accurate models applied to the correct spatial and temporal scales are needed. Our study investigates the role of the atmosphere and hydrosphere in pelagic habitat by modelling phytoplankton assemblages at two Long Term Ecological Research sites in the northern Adriatic Sea using niche-forming environmental variables (wind, temperature, salinity, river discharge, rain, and water column stratification). To study the synchronization between the phytoplankton community and these environmental variables at the two LTER sites, we applied current linear and nonlinear numerical methods for ecological modelling. The aim was to use periodic and/or non-periodic properties of the environmental variables to classify the phytoplankton assemblages at one LTER site (Gulf of Trieste - Slovenia) and then predict them at another LTER site 100 km away (Gulf of Venice - Italy). We found that periodicity played a role in the explanatory and predictive power of the environmental variables and that it was more important than non-periodic events in defining the common structure of the two pelagic habitats. The non-linear classification functions of the neural networks further increased the predictive power of these variables. We observed partial synchronization of communities at the mesoscale and differences between the original and predicted assemblages under similar environmental conditions. We conclude that mesoscale connectivity plays an important role in phytoplankton communities in the northern Adriatic. However, the loss of periodicity of niche-forming variables due to more frequent extreme meteorological and hydrological events could loosen these connections and affect the temporal succession of phytoplankton assemblages.
Keywords: phytoplankton, assemblages, Northern Adriatic, phenology, marine biology, hydrobiology
Published in DiRROS: 16.05.2024; Views: 18; Downloads: 7
URL Link to file
This document has many files! More...

4.
Recovering high-quality bacterial genomes from cross-contaminated cultures : a case study of marine Vibrio campbellii
Neža Orel, Eduard Fadeev, Gerhard J. Herndl, Valentina Turk, Tinkara Tinta, 2024, original scientific article

Abstract: Background: Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. Results: We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. Conclusions: Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Keywords: whole-genome assembly, non-axenic culture, plasmid, marine bacteria, marine biology
Published in DiRROS: 28.03.2024; Views: 162; Downloads: 57
URL Link to file
This document has many files! More...

Search done in 0.09 sec.
Back to top