Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (glycolysis) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Gamma-enolase : a well known tumour marker, with a less-known role in cancer
Tjaša Vižin, Janko Kos, 2015, review article

Abstract: Gamma-enolase, known also as neuron-specific enolase (NSE), is an enzyme of the glycolytic pathway, which is expressed predominantly in neurons and cells of the neuroendocrine system. As a tumour marker it is used in diagnosis and prognosis of cancer; however, the mechanisms enrolling it in malignant progression remain elusive. As a cytoplasmic enzyme gamma-enolase is involved in increased aerobic glycolysis, the main source of energy in cancer cells, supporting cell proliferation. However, different cellular localisation at pathophysiological conditions, proposes other cellular engagements. The C-terminal part of the molecule, which is not related to glycolytic pathway, was shown to promote survival of neuronal cells by regulating neuronal growth factor receptor dependent signalling pathways, resulting also in extensive actin cytoskeleton remodelling. This additional function could be important also in cancer cells either to protect cells from stressful conditions and therapeutic agents or to promote tumour cell migration and invasion. Gamma-enolase might therefore have a multifunctional role in cancer progression: it supports increased tumour cell metabolic demands, protects tumour cells from stressful conditions and promotes their invasion and migration.
Keywords: gamma-enolase, cancer, glycolysis, cell survival, tumour marker
Published in DiRROS: 23.04.2024; Views: 64; Downloads: 38
.pdf Full text (864,48 KB)
This document has many files! More...

2.
Qualitative analysis of the minimal Higgins model of glycolysis
Brigita Ferčec, Matej Mencinger, Tatjana Petek, Orhan Ozgur Aybar, Ilknur Kusbeyzi Aybar, 2023, original scientific article

Abstract: Glycolysis, one of the leading metabolic pathways, involves many different periodic oscillations emerging at positive steady states of the biochemical models describing this essential process. One of the models employing the molecular diffusion of intermediates is the Higgins biochemical model to explain sustained oscillations. In this paper, we investigate the center-focus problem for the minimal Higgins model for general values of the model parameters with the help of computational algebra. We demonstrate that the model always has a stable focus point by finding a general form of the first Lyapunov number. Then, varying two of the model parameters, we obtain the first three coefficients of the period function for the stable focus point of the model and prove that the singular point is actually a bi-weak monodromic equilibrium point of type $[1, 2]$. Additionally, we prove that there are two (small) intervals for a chosen parameter $a > 0$ for which one critical period bifurcates from this singular point after small perturbations.
Keywords: biological processes, biochemical models, glycolysis
Published in DiRROS: 18.03.2024; Views: 104; Downloads: 52
.pdf Full text (837,28 KB)
This document has many files! More...

3.
Candidate pathogenicity factor/effector proteins of ‘Candidatus Phytoplasma solani’ modulate plant carbohydrate metabolism, accelerate the ascorbate–glutathione cycle, and induce autophagosomes
Marina Dermastia, Špela Tomaž, Rebeka Strah, Tjaša Lukan, Anna Coll Rius, Barbara Dušak, Timotej Čepin, Aleš Kladnik, Maja Zagorščak, Kristina Gruden, Maruša Pompe Novak, 2023, original scientific article

Abstract: The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ‘Candidiatus Phytoplasma solani’ are unknown. Six putative pathogenicity factors/effectors from six different strains of ‘Ca. P. solani’ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate–glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate–glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.
Keywords: autophagosome, effector, glycolysis, pathogenicity factor, StAMP
Published in DiRROS: 24.08.2023; Views: 464; Downloads: 221
.pdf Full text (7,84 MB)
This document has many files! More...

Search done in 0.1 sec.
Back to top