Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (compressive strength) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Foundry wastes as a potential precursor in alkali activation technology
Barbara Horvat, Alenka Sešek Pavlin, Vilma Ducman, 2020, published scientific conference contribution

Abstract: In this study the amount of amorphous phase of elements useful in alkali activation of waste materials produced by the foundry industry was determined. Waste foundry sands, foundry flue gas and waste casting cores were alkali activated, and waste green ceramics and bottom ash were added to one of the foundry sand samples to shorten the time for producing measurable compressive strength from 1.5 years to 1 week.
Keywords: alkali activated materials, foundry wastes, compressive strength, upcycling, circular ecnomy
Published in DiRROS: 01.03.2024; Views: 148; Downloads: 178
URL Link to file
This document has many files! More...

2.
The deformation of alkali-activated materials at different curing temperatures
Mark Češnovar, Katja Traven, Vilma Ducman, 2020, published scientific conference contribution

Abstract: Alkali activation is a chemical process whereby materials rich in aluminosilicate, which dissolves in basic media at room temperature, form binding phases by polycondensation. The alkali- activated materials (AAM) are a promising alternative to binding materials such as cement or other products in civil engineering (van Deventer et al., 2012). This study investigates the early age shrinkage behavior of Slovenian ladle and electric arc furnace slag - based alkali activated materials at different curing temperatures. The dimensions of specimens cured at room temperature and elevated temperatures up to 90 °C were measured over the first 7 hours (every 10 min). The results show that the most shrinkage occurred at the highest temperature, owing to the highest rate of evaporation of liquid content. Loss of mass follows from the drying shrinkage.
Keywords: alkali activated materials, shrinkage, compressive strength
Published in DiRROS: 01.03.2024; Views: 237; Downloads: 370
.pdf Full text (670,52 KB)
This document has many files! More...

3.
Influence of particle size on compressive strength of alkali activated refractory materials
Barbara Horvat, Vilma Ducman, 2020, original scientific article

Abstract: Influence of particle size on the mechanical strength of alkali activated material from waste refractory monolithic was investigated in this study. Precursor was chemically and mineralogically analysed, separated on 4 fractions and alkali activated with Na-water glass. Alkali activated materials were thoroughly investigated under SEM and XRD to evaluate the not predicted differences in mechanical strength. Influence of curing temperature and time dependence at curing temperatures on mechanical strength were investigated in the sample prepared from a fraction that caused the highest compressive strength.
Keywords: refractory materials, alkali activation, particle size, SEM, XRF, XRD, compressive strength
Published in DiRROS: 21.08.2023; Views: 359; Downloads: 253
.pdf Full text (13,36 MB)
This document has many files! More...

4.
Report of RILEM TC 267-TRM phase 3 : validation of the R3 reactivity test across a wide range of materials
Diana Londono-Zuluaga, Sabina Dolenec, Maruša Mrak, 2022, original scientific article

Abstract: RILEM TC 267 TRM– “Tests for Reactivity of Supplementary Cementitious Materials” recommends the Rapid Reliable Relevant (R3) test as a method for determining the chemical reactivity of supplementary cementitious materials (SCMs) in Portland cement blends. In this paper, the R3 test was applied to 52 materials from a wide range of conventional and alternative SCMs with the aim to validate such test. An excellent correlation was found between the cumulative heat release and the bound water determined following the R3 test method. Comparison of the R3 test results to mortar compressive strength development showed that all conventional SCMs (e.g. blast furnace slag and fly ashes) followed the same trend, with the notable exception of very reactive calcined kaolinitic clays. It is discussed, through an in-depth statistical regression analysis of the R3 reactivity test results and the 28 days relative compressive strengths, how reactivity threshold values for classification of the chemical reactivity of SCMs could be proposed based on the R3 test results.
Keywords: supplementary cementitious materials, reactivity test, heat release, bound water, compressive strength
Published in DiRROS: 26.04.2023; Views: 255; Downloads: 146
.pdf Full text (2,15 MB)
This document has many files! More...

Search done in 0.13 sec.
Back to top